We investigate the spatial frequency response of a volume grating recorded in a ZrO2 nanoparticle-dispersed nanocomposite. We experimentally find that there exists the optimum recording intensity to maximize the saturated refractive index modulation amplitude of a nanocomposite grating recorded at short and long grating spacing. A strong parametric relationship between grating spacing and recording intensity is seen and an increase in the saturated refractive index modulation amplitude at shorter grating spacing (< 0.5 μm)can be obtained by using higher recording intensities than those at longer grating spacing. Such a trend can be qualitatively explained by a phenomenological model used for holographic polymer-dispersed liquid crystal gratings. We also describe another method for the improvement of the high spatial frequency response by co-doping of thiol monomer that acts as a chain-transfer agent.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.