Optical remote sensing has become a valuable tool in many application spaces because it can be unobtrusive, search large areas efficiently, and is increasingly accessible through commercially available products and systems. In the application space of chemical, biological, radiological, nuclear, and explosives (CBRNE) sensing, optical remote sensing can be an especially valuable tool because it enables data to be collected from a safe standoff distance. Data products and results from remote sensing collections can be combined with results from other methods to offer an integrated understanding of the nature of activities in an area of interest and may be used to inform in-situ verification techniques. This work will overview several independent research efforts focused on developing and leveraging spectral and polarimetric sensing techniques for CBRNE applications, including system development efforts, field deployment campaigns, and data exploitation and analysis results. While this body of work has primarily focused on the application spaces of chemical and underground nuclear explosion detection and characterization, the developed tools and techniques may have applicability to the broader CBRNE domain.
Hyperspectral and multispectral imagers have been developed and deployed on satellite and manned aerial platforms for decades and have been used to produce spectrally resolved reflectance and other radiometric products. Similarly, light detection and ranging, or LIDAR, systems are regularly deployed from manned aerial platforms to produce a variety of products, including digital elevation models. While both types of systems have demonstrated impressive capabilities from these conventional platforms, for some applications it is desirable to have higher spatial resolution and more deployment flexibility than satellite or manned aerial platforms can offer. Commercially available unmanned aerial systems, or UAS, have recently emerged as an alternative platform for deploying optical imaging and detection systems, including spectral imagers and high resolution cameras. By enabling deployments in rugged terrain, collections at low altitudes, and flight durations of several hours, UAS offer the opportunity to obtain high spatial resolution products over multiple square kilometers in remote locations. Taking advantage of this emerging capability, our team recently deployed a commercial UAS to collect hyperspectral imagery, RGB imagery, and photogrammetry products at a legacy underground nuclear explosion test site and its surrounds. Ground based point spectrometer data collected over the same area serves as ground truth for the airborne results. The collected data is being used to map the site and evaluate the utility of optical remote sensing techniques for measuring signatures of interest, such as the mineralogy, anthropogenic objects, and vegetative health. This work will overview our test campaign, our results to date, and our plans for future work.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.