We present a study of high-power quantum-cascade lasers (QCL) for 8 μm spectral range with active regions of latticematched to InP substrate and strain-balanced designs. The use of the strained quantum well/barrier pairs made it possible to increase the energy barrier between the upper laser level and continuum by ~ 200 meV. Our experiments show that utilization of the strain-balanced design of the active region makes it possible to more than double the characteristic temperature T0 to 253 K from 125 K for the lattice-matched design. In pulsed mode, QCLs with strain-balanced active region demonstrated high efficiency of 12% and high output optical power of 21 W (over 10 W per facet). This is the highest value of the optical power demonstrated to date in 8 μm spectral region to the best of our knowledge.
We present a study of quantum cascade laser dynamical properties accounting for the Joule heating released in the active region. In particular, we study the QCL emitting at 8 μm in the pulsed pumping mode and present experimental measurements, as well as a theoretical description of the QCL build-up time, showing the features appearing due to the Joule heating released inside the active region.
We report on experiments with conical refraction of laser beams possessing a high beam propagation parameter M2. With beam propagation parameter values M2=3 and M2=5, unusual Lloyd’s distributions with correspondingly three and five dark rings were observed. In order to explain this phenomenon, we extend the dual-cone model of the conical refraction that describes it as a product of interference of two cones that converge and diverge behind the exit facet of the crystal. In the extended model, these converging/diverging cones are represented as the cone-shaped quasi-Gaussian beams possessing the M2 parameter of an original beam. In this formalism, a beam-waist of these cone-shaped beams is proportional to the M2 value and defines the area of their interference which is a width of the Lloyd’s ring. Therefore, the number of dark rings in the Lloyd distribution is defined by the M2 value and can be much greater than unity. The results of the numerical simulations within the extended dual-cone model are in excellent agreement with the experiment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.