Metasurface optics provide an ultra-thin alternative to conventional refractive lenses. A present challenge is in realizing metasurfaces that exhibit tunable optical properties and achromatic behavior across the visible spectrum. I will discuss the design, fabrication, and characterization of metasurface lenses ("metalenses") that use asymmetric TiO2 nanostructures to induce a polarization-dependent optical response. These metalenses were used to demonstrate varifocal color imaging with white light from a halogen source. I will also provide an update on our efforts to fabricate stacked metasurfaces with multiple interacting layers that may offer enhanced performance across the visible spectrum.
The negatively-charged nitrogen-vacancy centers in diamond has motivated many groups building scalable quantum information processors based on diamond photonics. This is owning to the long-lived electronic spin coherence and the capability for spin manipulation and readout of NV centers.1-4 The primitive operation is to create entanglement between two NV centers, based on schemes such as 'atom-photon entanglement' proposed by Cabrillo et al.5To scale this type of scheme beyond two qubits, one important component is an optical switch that allows light emitted from a particular device to be routed to multiple locations. With such a switch, one has choices of routing photons to specified paths and has the benefit of improving the entanglement speed by entangling multiple qubits at the same time. Yield of the existing diamond cavities coupled with NV centers are inevitably low, due to the nature of randomness for NV placement and orientation, variation of spectral stability, and variation of cavity resonance frequency and quality factor. An optical switch provides the capability to tolerate a large fraction of defective devices by routing only to the working devices. Many type of switching devices were built on conventional semiconductor materials with mechanisms from mechanical, thermal switching to carrier injection, photonics crystal, and polymer refractive index tuning .6-8 In this paper, we build an optical-thermal switch on diamond with micro-ring waveguides, mainly for the simplicity of the diamond fabrication. The the switching function was realized by locally tuning the temperature of the diamond waveguides. Switching efficiency of 31% at 'drop' port and 73% at 'through' port were obtained.
We demonstrate coupling between the zero phonon line (ZPL) of nitrogen-vacancy centers in diamond and the
modes of optical micro-resonators fabricated in single crystal diamond membranes sitting on a silicon dioxide
substrate. A more than ten-fold enhancement of the ZPL is estimated by measuring the modification of the
spontaneous emission lifetime. The cavity-coupled ZPL emission was further coupled into on-chip waveguides
thus demonstrating the potential to build optical quantum networks in this diamond on insulator platform.
KEYWORDS: Diamond, Magnetic sensors, Luminescence, Infrared detectors, Infrared radiation, Fourier transforms, Photonics, Quantum computing, Current controlled current source, Medium wave
We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy (NV) ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume 50x50x300 μm3, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from DC to a few MHz. Operation in a gradiometer configuration yields a noise floor of 7 nTrms at ~110 Hz in one second of acquisition. We also present measurements of the zero-field splitting parameters as a function of temperature, a calibration which is essential for ultra-sensitive magnetometry at low frequencies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.