In this paper, we investigated the SBS suppression potential in a fiber amplifier with both cylindrical vector beam output and nonlinear spectral compression method applied. By applying different kinds of modes output and different spectral management schemes, the SBS threshold of a same fiber amplifier was measured to be 67 W, 95 W and 104 W. These schemes correspond to LP01 mode output with spectrum maintained, TM01 mode output with spectrum maintained and TM01 mode output with spectrum narrowed, respectively. Experimental results indicated that the SBS threshold of our fiber amplifier with cylindrical vector beam output and spectrum compressed can be enhanced by 1.56 times, comparing to the traditional Gaussian beam one. The combination of the two techniques can pave the way for mitigating the SBS effect in high-power narrow-linewidth fiber amplifiers.
In this paper, based on a linear polarized, white noise signal (WNS) phase modulated all fiber amplifier, the self-pulsing characteristics of polarization maintaining (PM) amplifier at the different phase modulation parameters with the same linewidth are analyzed experimentally. It is demonstrated that the self-pulsing threshold is closely related to the details of the modulation spectrum affected by the frequency and the signal power of the WNS, and it is near impossible to calculate by the linewidth. Besides, by suppressing the self-pulsing effect, we obtain an output of 2009 W with a linewidth of 22 GHz. The polarization extinction ratio (PER) is larger than 15 dB, and the M2 is lower than 1.2.
In this paper, we demonstrate 47 GHz linear polarized fiber amplifier injected by a simple fiber oscillator laser seed source with narrow linewidth and near diffraction-limited beam quality. Output powers of 419 W, 778 W, and 1107 W are achieved with 3dB linewidth of 26.5 GHz, 41 GHz, and 47 GHz, respectively. The M2 is 1.25 in the x-direction and 1.23 in the y-direction at the maximum laser power, respectively. The measured PER is large than 96% during the power scaling process. However, The SRS is observed when the laser power is 1107, the SNR is about 47dB, which means that the SRS effect has become a serious limitation for further power scaling of such PM-amplifier seeded by the fiber oscillator laser seed source.
The seed source with spectral linewidth broadening via phase modulation is potential to achieve the higher output power with effective SBS suppression. However, self-pulsing from the amplifier output is harmful. In this work, we study the self-pulsing characteristics in a long single-mode fiber with lower self-pulsing threshold instead of the high power amplifier. We provide a powerful experimental support for the self-pulsing mechanism in high-power narrow-linewidth fiber lasers, which is important for further output power scaling.
The behavior of the mode instability (MI) threshold in the double cladding Yb-doped fiber amplifier when the amplifier with different local heat load is studied theoretically and experimentally. A theoretical model is constructed, and the effects of different laser parameters on the local thermal load of the gain fiber are analyzed theoretically, such as pump direction, pump linewidth, thermal conductivity of cooling medium. An experimental structure is described. The effects of different local heat load on the MI threshold when the fiber amplifier have the same total or average heat load is studied. The theoretical and experimental results reveal that the MI threshold can be estimated by the local heat load of the gain fiber.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.