This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Glycated chitosan (GC) is derived from chitosan, a linear polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine through β–(1-4) linkage. Several lines of evidence have shown that GC is an immunoadjuvant that can target on primary and metastatic tumors formed in animal and human patients. In our previous data, GC was demonstrated to decrease the motility and invasion of mammalian breast cancer cells in vitro and in vivo. Radiofrequency ablation (RFA) is dependent on a small generator that delivers high frequency alternating electric current directly to burn a tumor lesion. Therefore, the temperature may reach up to above 60 °C. In this study, we used 4T1 mouse breast cancer cell that is the approximately equal to stage 4 of human breast cancer. And triple modality reporter gene (3R) was delivered into the cells using transfected piggyBac, a transposable element for observation of tumor growth and metastasis in vivo. Data showed that growth and metastasis of tumors smaller than 500mm3 were entirely suppressed by RFA-GC combination treatment. Plasma extraction from this group displayed an inhibitory effect on cultured 4T1 cells, suggesting some immunoreactions were triggered and therefore secreted some cytokines. Protein array data indicated that PF-4 may play a key role in GC-RFA caused tumor suppression but the further effects should be investigated. On the other hand, the survival rate of small tumor-bearing mice under RFA-GC treatment was higher than those of GC or RFA treatment only.
In conclusion, this study confirmed that radiofrequency ablation combined with GC could trigger an autoimmune response to inhibit tumor metastasis and tumorigenesis. For metastatic cancers, this combination treatment may become the foundation for a feasible cancer treatment modality.
First of all, an imaging prototype was demonstrated based on a high-energy in-line phase contrast system prototype. The DQE of this system is calculated through modulation transfer function (MTF), noise power spectrum (NPS) and input signal to noise ratio under a fixed radiation dose. The radiation dose was estimated by employing a 4-cm-thick BR12 phantom. In this research, the x-ray exposure conditions were modified by not only using different tube voltage but also different prime beam filtration. Aluminum, Molybdenum, Rhodium, and a combined filter were selected to acquire a variety of x-ray energy compositions with 100, 110 and 120 kVp exposures. The resultant curves are compared through the modes of different kVp/same filter and different filter/same kVp.
As a result, the curves obtained under a fixed radiation dose, indicate that the MTF performs similar behavior under different experimental mode; the NPS is majorly affected by the composition of x-ray photon energies; and the overall DQE decreases with the increasing portion of high-energy x-ray photons in the exposure.
Surface modification of upconversion nanoparticles with amphiphilic chitosan for cancer cell imaging
Magnetic resonance thermometry for monitoring photothermal effects of interstitial laser irradiation
The correlation study of temperature distribution with the immunology response under laser radiation
Function of immunoadjuvants in laser immunotherapy for treatment of metastatic breast tumors in rats
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
View contact details
No SPIE Account? Create one