Malignant melanoma is by far the most dangerous type of skin cancer. Currently, the gold standard to diagnose melanoma in the clinic is excisional biopsy and histopathologic analysis. Approximately 15-30 benign lesions are biopsied to diagnose each melanoma. Additionally, biopsies are invasive and result in pain, anxiety, scarring and disfigurement of patients, and they can be a financial burden to the health care system. Among several imaging techniques developed to enhance melanoma diagnosis, optical coherence tomography (OCT) with its high-resolution and intermediate penetration depth can potentially provide required diagnostic information, noninvasively. We propose an image analysis algorithm, ‘optical properties extraction (OPE)’ that drastically improves the specificity and sensitivity of OCT by identifying unique optical radiomic signatures pertinent to melanoma detection. We evaluate the performance of the algorithm using several tissue-mimicking phantoms. We then test the OPE algorithm with sixty-nine human subjects and demonstrate that melanoma can be differentiated from benign nevi with 97% sensitivity, and 98% specificity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.