Determination of the removal function is an important step in magnetorheological finishing (MRF) of optical materials. However, the removal function is difficult to determine if a spot sample of the same material as that needing polish is unavailable, thus preventing establishment of an MRF process plan. A method to resolve this issue is proposed, wherein an MRF process plan for an item of a differing optical material is migrated. The theoretical basis for migration is investigated, and simulations reveal that narrow nonlinear regions of the source and target materials’ removal functions are a necessary condition for adequate convergence rate. The proposed method is experimentally verified by finishing a ZnS part with the process plan of a BK7 optical part of the same geometry, with a convergence rate of 45.7% after four iterations.
Interferometer is a powerful tool for optical surface measurement, including figure and roughness, due to its nanometer accuracy and non-contact manner. Traditional phase-shifting interferometry (PSI) is much sensitive to environmental vibration that impairs its application in measurement in workshop or on machine. Based on the iterative algorithm that is tolerant to phase-shifting error caused by vibration, two interferometers are developed to measure the optical surface figure and roughness respectively. A laser interferometer, of which the aperture size is 150mm, has been built to measure the surface figure. Practical test demonstrates that the laser interferometer achieves accuracy better than 5nm under vibration of 0.4 micron-amplitude over a large frequency range, 0-35Hz. And an interferometric microscope has been proposed to measure the surface roughness and verified to be effective. The measuring area of the microscope depends on the employed interference objective, and a typical value is about 1 squared millimeter. The error of measured roughness (Sq) under vibration, 0.4 micron-amplitude and over 0-20Hz frequency range, is less than 0.5nm. The developed method and instruments could be applied to optical surface measurement in vibration. The study relaxes the requirement of interferometers on environment and predicates an in-workshop or on-machine solution for optical surface measurement.
Surface defect is a concerned aspect of surface integrity in ultra-precision machining. The dark field microscopy method is efficient in detecting surface processing defects, and has certain development potential. However, it still has deficiencies on reliability, certainty and cross-scale adaptability. In this paper, several kinds of dark field illumination modes are compared, and high contrast and adaptable illumination modes are defined through experiments. Then a defect detection device is designed, which can detect the surface defects of opaque or transparent components by using the dome light source illumination. To enlarge the field of view (FOV), an X-Y scanning stage is used to obtain sub-area image of the surface, and a stitching method based on feature registration with SURF (Speeded Up Robust Features) is also proposed in the manuscript. Researches show that the defect detection device designed in this paper can obtain detailed, high-contrast, and wide range dark field defect images; SURF registration is insensitive to image translation, rotation, scaling and image noise, and has high calculation speed, which can relax the requirement of image stitching on positioning device and environment. This study provides an effective and low-cost solution for defects detection over large-scale surface in ultra-precision machining.
In magnetorheological finishing (MRF), predicting the size of a removal function plays an important role in determining the efficiency of optical material removal. The size of the removal function can be adjusted for different immersion depths of optical parts into the MRF ribbon, which enables the development of multiple MRF-processing algorithms: dwell-time calculation, path planning, or dynamic control of MRF instruments. However, few methods for such algorithms have been developed to dynamically approximate the size of removal functions with respect to various immersion depths. Thus, the ability to dynamically approximate the size of the MRF removal function is indeed of significance. A dynamic approximation method is designed after analyzing the generation mechanism of removal function and its size; establishing the equations for size, which are further numerically analyzed and simplified for common MRF configurations; and approximating the length and width of removal function dynamically. The approximation accuracy is verified through experimental tests where UBK7 optical parts are polished on a PKC1000-Q2 MRF installation. It is revealed that the approximation errors for the length and width are less than 6% and 8%, respectively.
Single-crystal silicon is a typical infrared optical material, commonly machined by single-point diamond turning (SPDT) with micro-level figure accuracy and nano-level roughness. However, the tool marks, surface damage and middle-frequency error left by the diamond turning process may greatly affect the imaging quality. Magnetorheological finishing (MRF) is a deterministic, sub-aperture polishing technology that is very helpful in improving both surface nano-roughness and surface figure and can be used to polish silicon materials. Although the feasibility of MRF for single-crystal silicon has been proved, there are still some problems such as low material removal rate and uncontrollable surface integrity. In this study, the MRF mechanism for single-crystal silicon was explored, and the preparation method of MR fluid was optimised. An experiment was performed to machine a large-aperture single-crystal silicon aspheric surface on an MRF machine developed by China Academy of Engineering Physics. After polishing for several times, the figure accuracy PV improved from 5.9 μm to 0.56 μm, and roughness Rq reduced to 1.2 nm, verifying the excellent performance of MRF in infrared material processing.
Zinc sulfide is a kind of typical infrared optical material, commonly produced using single point diamond turning (SPDT). SPDT can efficiently produce zinc sulfide aspheric surfaces with micro-roughness and acceptable figure error. However the tool marks left by the diamond turning process cause high micro-roughness that degrades the optical performance when used in the visible region of the spectrum. Magnetorheological finishing (MRF) is a deterministic, sub-aperture polishing technology that is very helpful in improving both surface micro-roughness and surface figure.This paper mainly investigates the MRF technology of large aperture off-axis aspheric optical surfaces for zinc sulfide. The topological structure and coordinate transformation of a MRF machine tool PKC1200Q2 are analyzed and its kinematics is calculated, then the post-processing algorithm model of MRF for an optical lens is established. By taking the post-processing of off-axis aspheric surfacefor example, a post-processing algorithm that can be used for a raster tool path is deduced and the errors produced by the approximate treatment are analyzed. A polishing algorithm of trajectory planning and dwell time based on matrix equation and optimization theory is presented in this paper. Adopting this algorithm an experiment is performed to machining a large-aperture off-axis aspheric surface on the MRF machine developed by ourselves. After several times’ polishing, the figure accuracy PV is proved from 3.3λ to 2.0λ and RMS from 0.451λ to 0.327λ. This algorithm is used to polish the other shapes including spheres, aspheres and prisms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.