KEYWORDS: Nanolithography, Plasmonics, Near field optics, Near field, Biosensors, Target detection, Lithography, Biosensing, Nanostructures, Thin films
The detection sensitivity of surface plasmon resonance (SPR) biosensors has been improved by employing colocalization of spatial distribution of electromagnetic near-fields and detection molecules. We have used plasmon nanolithography to achieve light-matter colocalization on triangular nanoaperture arrays and optimized array configurations to improve colocalization efficiency. Streptavidin-biotin interactions were measured to validate the concept. It was confirmed that colocalized distributions of target binding and localized near-fields produced larger optical detection sensitivity. The colocalized detection was also shown to come with wider dynamic range than noncolocalized detection. The effective limit-of-detection of colocalized measurements was on the order of 30 pM. The colocalized detection sensitivity was estimated to be below 1 fg/mm2 in a 100-nm deep evanescent area, an enhancement by more than three orders of magnitude over conventional SPR sensor.
KEYWORDS: Luminescence, Near field, Silver, Microscopy, Near field optics, Surface plasmons, Nanolithography, Scanning electron microscopy, Image resolution, Image restoration
We have studied fluorescence cellular imaging with randomly distributed localized near-field induced by silver nano-islands. For the fabrication of nano-islands, a 10-nm silver thin film evaporated on a BK7 glass substrate with an adhesion layer of 2-nm thick chromium. Micrometer sized silver square pattern was defined using e-beam lithography and then the film was annealed at ~ 200°C. Raw images were restored using electric field distribution produced on the surface of random nano-islands. Nano-islands were modeled from SEM images. 488-nm p-polarized light source was set to be incident at 60°. Simulation results show that localized electric fields were created among nano-islands and that their average size was found to be ~135 nm. The feasibility was tested using conventional total internal reflection fluorescence microscopy while the angle of incidence was adjusted to maximize field enhancement. Mouse microphage cells were cultured on nano-islands, and actin filaments were selectively stained with FITC-conjugated phalloidin. Acquired images were deconvolved based on linear imaging theory, in which molecular distribution was sampled by randomly distributed localized near-field and blurred by point spread function of far-field optics. The optimum fluorophore distribution was probabilistically estimated by repetitively matching a raw image. The deconvolved images are estimated to have a resolution in the range of 100-150 nm largely determined by the size of localized near-fields. We also discuss and compare the results with images acquired with periodic nano-aperture arrays in various optical configurations to excite localized plasmonic fields and to produce super-resolved molecular images.
We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.
In this presentation, we explore the feasibility of plasmonic nanohole-based sub-diffraction-limited nanoscopy for biomolecular imaging. The technique utilizes near-field distribution localized by surface plasmon localization on metallic nanoholes which is used to sample molecular fluorescence. The optimum geometry of nanohole arrays was determined by numerical analysis. The localization sampling was applied to reconstructing sub-diffraction-limited images of gliding microtubules with a 76 nm effective resolution in the lateral direction. Extraordinary light transmission was also employed to address enhancement of axial resolution using nanohole arrays, based on which extraction of gliding motions of bacteria was demonstrated with an axial resolution down to 50 nm.
We analyze and evaluate super-resolved image acquisition with full-field localization microscopy in which an individual signal sampled by localization may or may not be switched. For the analysis, Nyquist-Shannon sampling theorem based on ideal delta function was extended to sampling with unit pulse comb and surface-enhanced localized near-field that was numerically calculated with finite difference time domain. Sampling with unit pulse was investigated in Fourier domain where magnitude of baseband becomes larger than that of adjacent subband, i.e. aliasing effect is reduced owing to pulse width. Standard Lena image was employed as imaging target and a diffraction-limited optical system is assumed. A peak signal-to-noise ratio (PSNR) was introduced to evaluate the efficiency of image reconstruction quantitatively. When the target was sampled without switching by unit pulse as the sampling width and period are varied, PSNR increased eventually to 18.1 dB, which is the PSNR of a conventional diffraction-limited image. PSNR was found to increase with a longer pulse width due to reduced aliasing effect. When switching of individual sampling pulses was applied, blurry artifact outside the excited field is removed for each pulse and PSNR soars to 25.6 dB with a shortened pulse period, i.e. effective resolution of 72 nm is obtained, which can further be decreased.
We have considered linear nanoaperture arrays for super-resolved live cell imaging. The nanoaperture arrays consist of nanoholes of varying diameter. Each nanohole localizes near-field distribution and produces extraordinary optical transmission (EOT) by surface plasmon localization. Much deeper light penetration was achieved in EOT than under total internal reflection. The results can be used to implement subdiffraction-limited axial resolution when applied to microscopy.
KEYWORDS: Target detection, Molecules, Near field, Biosensors, Near field optics, Surface plasmons, 3D modeling, Silver, Dielectrics, Imaging spectroscopy
We analyze sensing performances of localized surface plasmon resonance biosensors based on the overlap between target distribution and local field intensity produced by silver nanoislands in three detection models of non-specific, non-colocalized, and colocalized detection. The behavior of biomolecules was modeled to follow a probabilistic model using Poisson distribution. The results have found that the colocalized detection achieves the highest overlap signature with the smallest uncertainty and can enhance the limit of detection by more than 10000 times compared to conventional non-specific detection.
This research is about surface-enhanced Raman spectroscopy based on the gap-plasmonic effects between the silver nanoisland (AgNI) substrate and gold nanoparticles (AuNPs). With calculation, we prove that plasmonic-coupling phenomena between AuNPs and AgNIs were formed, which eventually affect to the signal enhancements, and we simulate the field enhancement according to the AuNPs position on the AgNI substrates. Consequently, we experimentally confirm the Raman signal enhancement using target as AuNP attached DNA, which were distributed on the AgNIs substrate randomly. Raman spectra measured on the AgNI substrate exhibit approximately 20-fold signal enhancements compare to the signals measured on a uniform silver film, and the experimental spectra agreed well with the results of simulation. This method has merit in that significant Raman signal enhancements can be achieved for large areas without a complicated nano-lithographic process.
KEYWORDS: Nanostructures, Near field, Nanoplasmonics, Surface plasmons, Super resolution, Near field optics, Biosensors, Optical engineering, Image resolution, Imaging systems
We have numerically analyzed the effect of geometrical parameters of circular, rhombic, and square nanostructure arrays when light fields are localized based on surface-enhanced nanoplasmonics. It was found that subdiffraction-limited field localization can be achieved using the nanostructures. We have also discussed various approaches to implement superresolution imaging systems using the obtained localized fields. The localized field can be used to implement colocalized light matter distribution with much enhanced sensitivity in surface plasmon resonance biosensor and more interestingly for super-resolution full-field microscopy.
A super-resolved axial imaging technique was investigated based on extraordinary transmission (EOT) of light using metallic gradient nanoaperture arrays. Light through subwavelength nanoapertures at thick metal film can be transmitted and amplified by several orders of magnitude due to plasmonic coupling. Here, the feasibility of EOT-based axial imaging with super resolution is explored. Since light penetration of EOT is much deeper than that of evanescent waves, the axial range to obtain the distance information of fluorescence signals can be extended by EOT. The axial distribution of ganglioside in mouse macrophage cells was measured with sub-diffraction-limited resolution after reconstruction using differential fluorescence excitation on gradient aperture arrays.
KEYWORDS: Microscopy, Surface plasmons, Near field, Luminescence, Silver, Live cell imaging, Nanostructures, Scanning electron microscopy, Molecular interactions, Thin films
Localized surface plasmon enhanced microscopy based on nanoislands of random spatial distribution was demonstrated for imaging live cells and molecular interactions. Nanoislands were produced without lithography by high temperature annealing under various processing conditions. The localization of near-field distribution that is associated with localized surface plasmon on metallic random nanoislands was analyzed theoretically and experimentally in comparison with periodic nanostructures. For experimental validation in live cell imaging, mouse macrophage-like cell line stained with Alexa Fluor 488 was prepared on nanoislands. The results suggest the possibility of attaining the imaging resolution on the order of 80 nm.
Surface plasmon resonance (SPR) has been applied to sensing biomolecular and drug interactions because it allows
real-time monitoring and label-free detection. Traditional thin film based SPR biosensing suffers from moderate
detection sensitivity. In this research, we investigate sensitivity enhancement by target colocalized SPR using various
subwavelength nanostructures. The nanostructures were designed by calculating near-field distribution based on rigorous
coupled-wave analysis. Experimentally, angled shadow evaporation was performed to fabricate the nanostructures for
target colocalization and measured resonance shifts using angle scanning SPR. The feasibility was tested by measuring
DNA hybridization. Experimental results confirm significantly enhanced detection sensitivity over traditional SPR
techniques to be feasible. The results are expected to open a new approach to biomolecular detection based on SPR.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.