The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic light house program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. Beam test with a HERD prototype, to verify the HERD specifications and the reading out method of wavelength shifting fiber and image intensified CCD, was taken at CERN SPS in November, 2015. The prototype is composed of an array of 5*5*10 LYSO crystals, which is 1/40th of the scale of HERD calorimeter. Experimental results on the performances of the calorimeter are discussed.
A novel dual-band static Fourier transform imaging spectrometer was designed, which was the spatio-temporally modulated imaging Fourier transform spectrometer based on Sagnac interferometer. The approach represented a simplification and mass reduction over the traditional approach. It could obtain two-dimensional spatial images and one dimensional spectral image in two bands simultaneously. The two bands was separated through a dichroic prism and imaging in two detectors. one band was the visible and near infrared band, with the spectral range 400nm-1000nm and spectral resolution 187.5 wave numbers; the other was the short wave infrared band, with the spectral range 1000nm- 2500nm and spectral resolution 150 wave numbers. To reduce the size of the Interferometer, a high aperture compression ratio telescope system was designed before. The optical aperture was compressed to 1/10, and the volume of interferometer was reduced to 1/1000. For the convenience of engineering implementation, the telescope was composed of two no-aberration object lens: fore-lens and Collimating lens. The two band imaging spectrometers shared the primary lens and the second lens of the fore-lens and use their own collimating lens, interferometers and Fourier transform lens. The collimating lens and the Fourier transform lens of each spectrometer could be designed to the same structural style and parameters. The both spectrometers had a focal length of 1000mm, F number of 5, FOV(field of view) of 1°. Moreover, both image qualities were close to the diffraction limit, the distortion was less than 2%. The advantage of the instrument was that dual band spectral image could be acquired at the same time and the interferometer was miniaturized extremely in the case of unchanged technical indicators.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.