This investigation applied the digital image correlation technique (DIC) on a pressure vessel that contained several surface pit defects under high pressure. Data on the deformation of the defects and peripheral area is obtained by this method. The results show that the stress and strain increase with the depth among different pits and are the largest at the bottom of any given pit. This method has proven to be a good choice for this type of experiment, where elastic and plastic surface strains need to be measured. The DIC can satisfy the requirements of being in situ, in real time, full-field and make non-contact measurements with more accurate and obvious experimental results compared with traditional measurement methods and pressure vessel test regulations. Also, it is a new, effective way for monitoring defects in online pressure vessels as well as a reliable basis for pressure vessels’ safety evaluation.
The digital shearograghy method has shown strong cutting edge in the whole-field measurement, the simple optical road, the easy modulation and the low demand for environment. Also the phase-shifting method which is used in digital shearograghy can improve the precision of the measurement greatly. And therefore these methods are used in Non Destructive Testing (NDT) widely. In this paper, the inner defect detection of pressure vessels was studied via the theoretical mode, the numerical simulation (finite element method) and the experiment in which the digital shearograhy and phase-shifting method was used. The first-order derivative maximum of the out-of-plane displacement in the defect which have different diameters and depths under the various pressures were obtained and compared with each other. And the results obtained with the three different means mentioned above are consistent. According to the maximum number of 1st derivation, the defect of pressure vessels is detected when the proportion of the diameter and the thickness of defect is the more than 9. In addition, the phase diagrams and the out-of-plane displacement gradients were also gained. Based on the phase diagram, it is easily determined whether the defect exists, and the defect relative size can be qualitatively obtained. It is proved that there is feasibility and advantage of the digital shearograghy when it is used in inner defect detection of pressure vessels. This study can provide a new method that is able to detect inner defects of pressure vessels and widen the application of the digital shearograghy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.