In this paper, pulsed infrared thermography is applied to the study of an ancient Chinese bronze sword. A clay core, as a piece-mold casting remains, is found inside the sword handle, the length of which is obtained by analyzing the thermographic images. Meanwhile, corrosion and cracks are also located on the body of the bronze sword. To obtain the thickness of the bronze handle around the clay core, thermal quadrupole simulation is used. By analyzing the characteristic time from the thermographic experiment and the simulation, the thickness of the materials is determined. These results provide a deeper understanding of the manufacturing of the bronze sword and also contribute to the later conservation studies.
Pulsed infrared thermography is applied to the study of a mold casting Chinese bronze lei 罍 dated to the late Shang dynasty (c.a.1250–1050 BC), currently housed in the Capital Normal University Museum. Many spacers and a defective area of this ancient bronze are partly covered with repair material. By analyzing thermographic images using a one-layer thermal diffusion model, it is found that the spacers were specifically made for this bronze. The thickness of the repairing material in the defective area is measured using thermal quadrupole modelling in multilayer materials. This is the first application of this method to the field of cultural heritage conservation. These results provide a deeper understanding of the manufacturing process of ancient Chinese bronzes from the viewpoint of archaeological research. They also help assess the repair status from the conservation viewpoint.
This paper mainly explores the application of thermal signals generated by sequential laser pulses in the detection of metal material defects. Here we use flat bottom holes with different sizes on stainless steel as our sample. Sequential laser pulses are used as thermal excitation source and the surface temperature field is recorded by infrared thermal imager.By analyzing the relationship between the surface temperature of the defect area under sequential pulse excitation, the defect aspect ratio can be obtained due to different 3D thermal diffusion process. The experimental scheme and data processing method described in this paper provide a new method and theoretical basis for the measurement of metal defects size by sequential laser pulses, and have certain reference value for the detection and research of other metal material defects
In order to measure the thickness of the rusted bronze layer quickly and accurately, an active infrared thermal imaging technique is developed. Pulse flash lamp was used to excite the surface of the specimen, and infrared thermal imager was used to record the temperature decay of the specimen surface before and after flash. This paper presents a pulse thermal imaging multi-layer analysis method (PTI-MLA) which consists of a pulsed thermal imaging (PTI) system to acquire experimental data and a multilayer analysis (MLA) data-processing algorithm to derive parameters of the corroded bronze. This paper studies a bronze pot fragment from the China’s Spring and Autumn period excavated in Sujialong site, Hubei province. The corrosion thickness map of the fragment is calculated and analyzed by PTI-MLA method. Comparing the measured values with the CT scanning results, the error is less than 10%. The final result indicates that the PTI-MLA method can be used to measure the thickness of rust layer on the surface of bronze ware and obtain high-precision thickness images.
Emissivity is one of the important parameters to reflect the thermal characteristics of the surface of an object. It plays a great role in the research of infrared coatings with high or low emissivity. In this paper, a novel non-contact experimental method is proposed to measure the coating’s emissivity using the dual-temperature method, and the error of the measured infrared emissivity with different base board materials is analyzed.
With the continuous progress of modern industry, the traditional nondestructive testing methods cannot meet the growing demand. At present, as a novel approach, the thermography non-destructive testing (TNDT) technology has been widely used in various industrial fields. In this paper, we present the study of a three-layer "metal-air-metal" structure, firstly through the modeling by finite element analysis software COMSOL Multiphysics, and then under the laboratory conditions using flash lamp as excitation methods for TNDT. Based on the preliminary simulation and experimental results , it is proved that it is possible to detect the bottom layer defects with a certain aspect ratio in the multilayer structure. It has practical significance in many scenarios, such as the locating the rivet holes under aircraft skin, the detection of defects below insulation layer and tomographic inspection of post-impact multilayer composites.
The manufacture and use of bronze ritual vessels, as far back as the second and the first millennium BC, is an essential tool in maintaining social order and political structure in China’s Shang and Zhou periods, yet the casting techniques that made them have not been well discussed. The core issue is the manufacturing and use of clay moulds. Not only their design and positioning, archaeological studies show that their material property is also a key to the success of casting such products. The present work, among a series research, is mainly focused on the thermal property analysis of the ancient bronze casting moulds and two other contemporary moulds for comparison. Thermal diffusivity is measured with pulsed thermography as a non-destructive method. The results prove that the thermal diffusivity of ancient bronze casting moulds are relatively low which allows liquid bronze to flow for an extended duration, filling all fine patterns and corners. The difference between the three types of moulds are discussed.
Laser-wakefield accelerators generate femtosecond-duration electron bunches with energies from 10s of MeV to several GeV in millimetre distances by exploiting the large accelerating gradients created when a high-intensity laser pulse propagates in an underdense plasma. The process governing the formation of the accelerating structure (bubble") also causes the generation of sub-picosecond duration, 1-2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. We present simulations showing that these wide-angle beams can be used to produce coherent transition radiation in the 0.1-5 THz frequency range with 10s μJ to mJ-level energy if passed through an inserted metal foil, or directly at the plasma-vacuum interface. We investigate how the properties of terahertz radiation change with foil size, position and orientation. The bunch length and size of wide-angle beams increase quickly as the electrons leave the accelerator, causing a shift of the radiation frequency peak from about 1 THz at a distance of 0.1 mm from the accelerator exit to 0.2 THz at 1 mm. If the foil size is reduced, for example to match the typical diameter of the plasma channel formed in a laser-wakefield accelerator, simulating the emission from the plasma-vacuum boundary, the low-frequency side of the spectrum is suppressed. The charge of wide-angle electron beams is expected to increase linearly with the laser intensity, with a corresponding quadratic increase of the terahertz radiation energy, potentially paving the way for mJ-level sources of coherent terahertz radiation.
Here we explore ways of transforming laser radiation into incoherent and coherent electromagnetic radiation using laserdriven plasma waves. We present several examples based on the laser wakefield accelerator (LWFA) and show that the electron beam and radiation from the LWFA has several unique characteristics compared with conventional devices. We show that the energy spread can be much smaller than 1% at 130-150 MeV. This makes LWFAs useful tools for scientists undertaking time resolved probing of matter subject to stimuli. They also make excellent imaging tools. We present experimental evidence that ultra-short XUV pulses, as short as 30 fs, are produced directly from an undulator driven by a LWFA, due to the electron bunches having a duration of a few femtoseconds. By extending the electron energy to 1 GeV, and for 1-2 fs duration pulses of 2 nm radiation peak powers of several MW per pC can be produced. The increased charge at higher electron energies will increase the peak power to GW levels, making the LWFA driven synchrotron an extremely useful source with a spectral range extending into the water window. With the reduction in size afforded by using LWFA driven radiation sources, and with the predicted advances in laser stability and repletion rate, ultra-short pulse radiation sources should become more affordable and widely used, which could change the way science is done.
The increasing demand for high laser powers is placing huge demands on current laser technology. This is now reaching a limit, and to realise the existing new areas of research promised at high intensities, new cost-effective and technically feasible ways of scaling up the laser power will be required. Plasma-based laser amplifiers may represent the required breakthrough to reach powers of tens of petawatt to exawatt, because of the fundamental advantage that amplification and compression can be realised simultaneously in a plasma medium, which is also robust and resistant to damage, unlike conventional amplifying media. Raman amplification is a promising method, where a long pump pulse transfers energy to a lower frequency, short duration counter-propagating seed pulse through resonant excitation of a plasma wave that creates a transient plasma echelon that backscatters the pump into the probe. Here we present the results of an experimental campaign conducted at the Central Laser Facility. Pump pulses with energies up to 100 J have been used to amplify sub-nanojoule seed pulses to near-joule level. An unprecedented gain of eight orders of magnitude, with a gain coefficient of 180 cm−1 has been measured, which exceeds high-power solid-state amplifying media by orders of magnitude. High gain leads to strong competing amplification from noise, which reaches similar levels to the amplified seed. The observation of 640 Jsr−1 directly backscattered from noise, implies potential overall efficiencies greater than 10%.
Advances in laser technology have driven the development of laser-wakefield accelerators, compact devices that are capable of accelerating electrons to GeV energies over centimetre distances by exploiting the strong electric field gradients arising from the interaction of intense laser pulses with an underdense plasma. A side-effect of this acceleration mechanism is the production of high-charge, low-energy electron beams at wide angles. Here we present an experimental and numerical study of the properties of these wide-angle electron beams, and show that they carry off a significant fraction of the energy transferred from the laser to the plasma. These high-charge, wide-angle beams can also cause damage to laser-wakefield accelerators based on capillaries, as well as become source of unwanted bremsstrahlung radiation.
The laser-plasma wakefield accelerator is a novel ultra-compact particle accelerator. A very intense laser pulse focused onto plasma can excites plasma density waves. Electrons surfing these waves can be accelerated to very high energies with unprecedented accelerating gradients in excess of 1 GV/cm. While accelerating, electrons undergo transverse betatron oscillations and emit synchrotron-like x-ray radiation into a narrow on-axis cone, which is enhanced when electrons interact with the electromagnetic field of the laser. In this case, the laser can resonantly drive the electron motion, lading to direct laser acceleration. This occurs when the betatron frequency matches the Doppler down-shifted frequency of the laser. As a consequence, the number of photons emitted is strongly enhanced and the critical photon energy is increases to 100’s of keV.
Raman backscattering (RBS) in plasma has been proposed as a way of amplifying and compressing high intensity
laser pulses for more than a decade. Not like the chirped pulse ampliffication (CPA) laser system, in which the
laser intensity is limited by the damage threshold of conventional media, plasma is capable of tolerating ultrahigh
laser intensities, together with RBS which is enable to transfer laser energy efficiently from a higher frequency pulse to a lower one, this scheme opens a scenario of the next generation of laser amplifiers. Experimental investigation has been carried out with a long (250 ps) pump pulse and a counter-propagating short (70 fs) probe pulse interacting in an under-dense preformed capillary plasma channel. Energy transfer from the pump pulse to the probe was observed. The guiding property was studied and the energy gain dependence of pump and probe energy were recorded.
Raman backscattering (RBS) in plasma is an attractive source of intense, ultrashort laser pulses, which has the
potential asa basic for a new generation of laser amplifiers.1 Taking advantage of plasma, which can withstand
extremely high power densities and can offer high efficiencies over short distances, Raman amplification in
plasma could lead to significant reductions in both size and cost of high power laser systems. Chirped laser pulse
amplification through RBS could be an effective way to transfer energy from a long pump pulse to a resonant
counter propagating short probe pulse. The probe pulse is spectrally broadened in a controlled manner through
self-phase modulation. Mechanism of chirped pulse Raman amplification has been studied, and features of
supperradiant growth associated with the nonlinear stage are observed in the linear regime. Gain measurements
are briefly summarized. The experimental measurements are in qualitative agreement with simulations and
theoretical predictions.
Electron acceleration using plasma waves driven by ultra-short relativistic intensity laser pulses has
undoubtedly excellent potential for driving a compact light source. However, for a wakefield accelerator to
become a useful and reliable compact accelerator the beam properties need to meet a minimum standard. To
demonstrate the feasibility of a wakefield based radiation source we have reliably produced electron beams
with energies of 82±5 MeV, with 1±0.2% energy spread and 3 mrad r.m.s. divergence using a 0.9 J, 35 fs 800
nm laser. Reproducible beam pointing is essential for transporting the beam along the electron beam line. We
find experimentally that electrons are accelerated close to the laser axis at low plasma densities. However, at
plasma densities in excess of 1019 cm-3, electron beams have an elliptical beam profile with the major axis of
the ellipse rotated with respect to the direction of polarization of the laser.
High power short pulse lasers are usually based on chirped pulse amplification (CPA), where a frequency chirped
and temporarily stretched "seed" pulse is amplified by a broad-bandwidth solid state medium, which is usually
pumped by a monochromatic "pump" laser. Here, we demonstrate the feasibility of using chirped pulse Raman
amplification (CPRA) as a means of amplifying short pulses in plasma. In this scheme, a short seed pulse is
amplified by a stretched and chirped pump pulse through Raman backscattering in a plasma channel. Unlike
conventional CPA, each spectral component of the seed is amplified at different longitudinal positions determined
by the resonance of the seed, pump and plasma wave, which excites a density echelon that acts as a "chirped"
mirror and simultaneously backscatters and compresses the pump. Experimental evidence shows that it has
potential as an ultra-broad bandwidth linear amplifier which dispenses with the need for large compressor
gratings.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.