In this paper, we report a high efficiency, addressable 940 nm Vertical-Cavity Surface-Emitting Laser (VCSEL) array with a tight pitch of 10 m for a compact, low-power sensing light source. High electrical resistance of a small diameter semiconductor DBR is a major issue to obtain a high-power conversion efficiency in achieving a tight pitch VCSEL array. We have developed a highly efficient back side emitted VCSEL with intracavity contacted structure, mesa diameter of 7.5 μm, and optical aperture of 3.0 μm. The power conversion efficiency exceeded 30% from 0.5 mW to 3.5 mW in the wide power range. We also report Tx module using this highly efficient VCSEL with a tight pitch of 10 μm. The tight pitch addressable 2D VCSEL array required sophisticated process techniques because they have a small spacing of 2–3 μm between mesas. To improve productivity, we developed a new device structure decreasing the process difficulty between mesas and demonstrated 2D addressable VCSEL array arranged 64 by 64 matrix and 4096 emitters. In addition, we demonstrated addressable operation with assembled sample using Si interposer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.