A pump-probe ultrasonic laser approach is developed for characterizing the anisotropic photoelasticity (AP) which is related to crystal structures of monocrystalline semiconductors (MSs). The approach exploits the perturbation to the polarization of the monochromatic laser beam when the laser beam interacts with the lattice of MSs. The actively generated strains at the microscopic scale (with a magnitude from 10-4 to 10-5) facilitates detailed, quantitative characterization of lattice properties MSs. A multiphysics model is established to interpret experimental observations, affirming there exists distinct orientation-dependence and crystal-structure-related symmetry of the perturbed polarization state, which is related to mechanical, photoelastic and strain-induced optical anisotropies of MSs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.