In recent years terahertz (THz) technology has been an emerging research field with a broad range of applications. THz radiation falls between the infrared and microwave radiation in the electromagnetic spectrum. Most THz sources to date are not related to the spin degree of freedom; however, recent research efforts in spintronics and ferromagnetism demonstrated that the electron spin offers completely new opportunities for the generation of ultrafast photocurrents. For instance, magnetic heterostructures are very easy to pattern and potentially allow to tailor THz emission characteristics by design. Here, we demonstrate that an ultrafast spin-current pulse driven by a femtosecond laser pulse can create THz transients in microstructured magnetic heterostructures due to the inverse spin Hall effect. We compare the THz electric field and the THz spectrum of a control CoFeB/Pt film with microstructured CoFeB/Pt wires as well as microstructured CoFeB/MgO wires patterned on an extended Pt film. We find that the THz electric field amplitude is proportional to the coverage of the CoFeB/Pt heterostructure on top of the MgO substrate. Furthermore, we analyze the magnetization direction dependence of the THz transients with respect to the easy axis of the ferromagnetic wire. The presented results are the first steps towards shaping and controlling the THz properties by microstructuring of spintronics-based THz emitters.
Tailoring Gilbert damping of metallic ferromagnetic thin films is one of the central interests in spintronics applications. Here we report a giant Gilbert damping anisotropy in epitaxial Co50Fe50 (CoFe) thin film with a maximum-minimum damping ratio of 400 %, determined by broadband spin-torque as well as inductive ferromagnetic resonance (FMR). Our CoFe films are deposited via molecular beam epitaxy at room temperature. The films are then fabricated into micron-scale devices. The first sample series, with CoFe(10 nm) and CoFe(10 nm)/Pt(6 nm), are prepared for spin-torque FMR. The second sample series, with CoFe(20 nm), are prepared for vector network analyzer FMR measurements. In addition to the fourfold magnetocrystalline anisotropy, we also find a large fourfold Gilbert damping anisotropy, along with small and consistent inhomogeneous linewidth broadening. In order to exclude the two-magnon scattering influence on linewidth, we have also conducted spin-torque FMR on a CoFe/Pt sample up to 32 GHz and we don’t find any linewidth slope softening in the frequency range. We conclude that the origin of this damping anisotropy is the variation of the spin-orbit coupling (SOC) for different magnetization orientations in the cubic lattice. The large SOC anisotropy may come from the atomic short-range order in disordered Co-Fe alloy, which preserve global cubic symmetry but can have large effects on SOC. The SOC anisotropy is further corroborated from the large crystalline the anisotropic magnetoresistance in CoFe.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.