Purpose. Finding desired scan planes in ultrasound (US) imaging is a critical first task that can be time-consuming, influenced by operator experience, and subject to inter-operator variability. To circumvent these problems, interventional US imaging often necessitates dedicated, experienced sonographers in the operating room. This work presents a new approach leveraging deep reinforcement learning (RL) to assist probe positioning. Methods. A deep Q-network (DQN) is applied and evaluated for renal imaging and is tasked with locating the dorsal US scan plane. To circumvent the need for large labeled datasets, images were resliced from a large dataset of CT volumes and synthesized to US images using Field II, CycleGAN, and U-GAT-IT. The algorithm was evaluated on both synthesized and real US images, and its performance was quantified in terms of the agent’s accuracy in reaching the target scan plane. Results. Learning-based synthesis methods performed better than the physics-based approach, achieving comparable image quality when qualitatively compared to real US images. The RL agent was successful in reaching target scan planes when adjusting the probe’s rotation, with the U-GAT-IT model demonstrating superior generalizability (80.3% reachability) compared to CycleGAN (54.8% reachability). Conclusions. The approach presents a novel RL training strategy using image synthesis for automated US probe positioning. Ongoing efforts aim to evaluate advanced DQN models, image-based reward functions, and support probe motion with higher degrees of freedom.
Cone-beam CT (CBCT) is widespread in abdominal interventional imaging, but its long acquisition time makes it susceptible to patient motion. Image-based autofocus has shown success in CBCT deformable motion compensation, via deep autofocus metrics and multi-region optimization, but it is challenged by the large parameter dimensionality required to capture intricate motion trajectories. This work leverages the differentiable nature of deep autofocus metrics to build a novel optimization strategy, Multi-Stage Adaptive Spine Autofocus (MASA), for compensation of complex deformable motion in abdominal CBCT. MASA poses the autofocus problem as a multi-stage adaptive sampling strategy of the motion trajectory, sampled with Hermite spline basis with variable amplitude and knot temporal positioning. The adaptive method permits simultaneous optimization of the sampling phase, local temporal sampling density, and time-dependent amplitude of the motion trajectory. The optimization is performed in a multi-stage schedule with increasing number of knots that progressively accommodates complex trajectories in late stages, preconditioned by coarser components from early stages, and with minimal increase in dimensionality. MASA was evaluated in controlled simulation experiments with two types of motion trajectories: i) combinations of slow drifts with sudden jerk (sigmoid) motion; and ii) combinations of periodic motion sources of varying frequency into multi-frequency trajectories. Further validation was obtained in clinical data from liver CBCT featuring motion of contrast-enhanced vessels, and soft-tissue structures. The adaptive sampling strategy provided successful motion compensation in sigmoid trajectories, compared to fixed sampling strategies (mean SSIM increase of 0.026 compared to 0.011). Inspection of the estimated motion showed the capability of MASA to automatically allocate larger sampling density to parts of the scan timeline featuring sudden motion, effectively accommodating complex motion without increasing the problem dimension. Experiments on multifrequency trajectories with 3-stage MASA (5, 10, and 15 knots) yielded a twofold SSIM increase compared to single-stage autofocus with 15 knots (0.076 vs 0.040, respectively). Application of MASA to clinical datasets resulted in simultaneous improvement on the delineation of both contrast-enhanced vessels and soft-tissue structures in the liver. A new autofocus framework, MASA, was developed including a novel multi-stage technique for adaptive temporal sampling of the motion trajectory in combination with fully differentiable deep autofocus metrics. This novel adaptive sampling approach is a crucial step for application of deformable motion compensation to complex temporal motion trajectories.
Cone-Beam CT (CBCT) is used in Interventional Radiology (IR) for identification of complex vascular anatomy, difficult to visualize in 2D fluoroscopy. However, long acquisition time makes CBCT susceptible to soft-tissue deformable motion that degrades visibility of fine vessels. We propose a targeted framework to compensate for deformable intra-scan motion via learned full-sequence models for identification of vascular anatomy coupled to an autofocus function specifically tailored to vascular imaging. The vessel-targeted autofocus acts in two stages: (i) identification of vascular and catheter targets in the projection domain; and (ii) autofocus optimization for a 4D vector field through an objective function that quantifies vascular visibility. Target identification is based on a deep learning model that operates on the complete sequence of projections, via a transformer encoder-decoder architecture that uses spatial-temporal self-attention modules to infer long-range feature correlations, enabling identification of vascular anatomy with highly variable conspicuity. The vascular autofocus function is derived through eigenvalues of the local image Hessian, which quantify the local image structure for identification of bright tubular structures. Motion compensation was achieved via spatial transformer operators that impart time dependent deformations to NPAR = 90 partial angle reconstructions, allowing for efficient minimization via gradient backpropagation. The framework was trained and evaluated in synthetic abdominal CBCTs obtained from liver MDCT volumes and including realistic models of contrast-enhanced vascularity with 15 to 30 end branches, 1 – 3.5 mm vessel diameter, and 1400 HU contrast. The targeted autofocus resulted in qualitative and quantitative improvement in vascular visibility in both simulated and clinical intra-procedural CBCT. The transformer-based target identification module resulted in superior detection of target vascularity and a lower number of false positives, compared to a baseline U-Net model acting on individual projection views, reflected as a 1.97x improvement in intersection-over-union values. Motion compensation in simulated data yielded improved conspicuity of vascular anatomy, and reduced streak artifacts and blurring around vessels, as well as recovery of shape distortion. These improvements amounted to an average 147% improvement in cross correlation computed against the motion-free ground truth, relative to the un-compensated reconstruction. Targeted autofocus yielded improved visibility of vascular anatomy in abdominal CBCT, providing better potential for intra-procedural tracking of fine vascular anatomy in 3D images. The proposed method poses an efficient solution to motion compensation in task-specific imaging, with future application to a wider range of imaging scenarios.
Cone-beam CT (CBCT) is widely used for guidance in interventional radiology but it is susceptible to motion artifacts. Motion in interventional CBCT features a complex combination of diverse sources including quasi-periodic, consistent motion patterns such as respiratory motion, and aperiodic, quasi-random, motion such as peristalsis. Recent developments in image-based motion compensation methods include approaches that combine autofocus techniques with deep learning models for extraction of image features pertinent to CBCT motion. Training of such deep autofocus models requires the generation of large amounts of realistic, motion-corrupted CBCT. Previous works on motion simulation were mostly focused on quasi-periodic motion patterns, and reliable simulation of complex combined motion with quasi-random components remains an unaddressed challenge. This work presents a framework aimed at synthesis of realistic motion trajectories for simulation of deformable motion in soft-tissue CBCT. The approach leveraged the capability of conditional generative adversarial network (GAN) models to learn the complex underlying motion present in unlabeled, motion-corrupted, CBCT volumes. The approach is designed for training with unpaired clinical CBCT in an unsupervised fashion. This work presents a first feasibility study, in which the model was trained with simulated data featuring known motion, providing a controlled scenario for validation of the proposed approach prior to extension to clinical data. Our proof-of-concept study illustrated the potential of the model to generate realistic, variable simulation of CBCT deformable motion fields, consistent with three trends underlying the designed training data: i) the synthetic motion induced only diffeomorphic deformations – with Jacobian Determinant larger than zero; ii) the synthetic motion showed median displacement of 0.5 mm in regions predominantly static in the training (e.g., the posterior aspect of the patient laying supine), compared to a median displacement of 3.8 mm in regions more prone to motion in the training; and iii) the synthetic motion exhibited predominant directionality consistent with the training set, resulting in larger motion in the superior-inferior direction (median and maximum amplitude of 4.58 mm and 20 mm, ⪆2x larger than the two remaining direction). Together, the proposed framework shows the feasibility for realistic motion simulation and synthesis of variable CBCT data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.