While breast density is known as one of the critical risk factors of breast cancer, Digital breast tomosynthesis (DBT)-based diagnostic performance is known to have a strong dependence on breast density. As a potential solution to increase the diagnostic performance of DBT, we are investigating dual-energy DBT imaging techniques. We estimated partial path lengths of an x-ray through water, lipid, and protein from the measured dual-energy projection data and the object thickness information. We reconstructed material-selective DBT images for the material-decomposed projection. The feasibility of the proposed dual-energy DBT scheme has been demonstrated by using physical phantoms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.