This paper focuses on evaluating three fuzzy image segmentation algorithms in lung nodule detection scenario: fuzzy entropy-based method, multivariate fuzzy C-means method (MFCM), adaptive fuzzy C-means method (AFCM) and comparing them with the iterative threshold selection method. The experimental result shows that all three methods outperform iterative threshold selection method. The two fuzzy C-means clustering based algorithms achieve better segmentation performance without losing true positives. However, fuzzy entropy-based image segmentation removes the false positives at the cost of losing some true positives, which is a risky approach and hence it is not recommended for lung nodule detection. Moreover, although AFCM outperforms MFCM in true positive detection significantly, in the sense of TPR/FP, MFCM is comparable to AFCM in the confidence interval of significant level 0.95, since AFCM brings in more false positives than MFCM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.