The performance characteristics of white light sources based on a multiple-LED approach, in particular dichromatic and trichromatic sources are analyzed in detail. Figures of merit such as the luminous efficacy, color temperature, and color rendering capabilities are provided for a wide range of primary emission wavelengths. Spectral power density functions of LEDs are assumed to be thermally and inhomogeneously broadened to a full width at half maximum of several kT, in agreement with experimental results. A gaussian line shape is assumed for each of the emission bands. It is shown that multi-LED white light sources have the potential for luminous efficacies greater than 400 lm/W (dichromatic source) and color rendering indices of greater than 90 (trichromatic source). Contour maps for the color rendering indices and luminous efficacies versus three wavelengths are given.
A high-reflectivity omni directional reflector (ODR) has been incorporated into a GaInN light-emitting diode (LED) structure. The ODR comprises a transparent, electrically conductive quarter-wave layer of indium tin oxide clad by silver and serves as an ohmic contact to p-type GaN. It is shown that ODR-LEDs have low optical losses and high extraction efficiency. Mesa-structure GaInN/GaN ODR-LEDs emitting in the blue wavelength range are demonstrated and compared to GaInN/GaN LEDs with semitransparent Ni/Au top contacts. The extraction efficiency of ODR-LEDs is higher as compared to conventional LEDs with Ni/Au contacts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.