Design rules and the design rule check (DRC) utility are conventional approaches to design for manufacturability
(DFM). The DRC utility is based on unsophisticated rules to check the design layout in a simple environment. As the
design dimension shrinks drastically, the introduction of a more powerful DFM utility with model-based layout
patterning check (LPC) becomes mandatory for designers to filter process weak-points before taping out layouts. In this
paper, a system of integrated hotspot scores consisting of three lithography sensitive indexes is proposed to assist
designers to circumvent risky layout patterns in lithography. With the hotspot fixing guideline and the hotspot severity
classification deduced from the scoring system provided in this paper, designers can deliver much more manufacturable
designs.
The control of global critical dimension uniformity (GCDU) across the entire mask becomes an important factor for the high-end masks quality. Three major proceses induce GCDU error before after-developing inspection (ADI) including the E-Beam writing, baking, and developing processes. Due to the charging effect, the fogging effect, the vacuum effect and other not-well-known effects, the E-Beam writing process suffers from some consistent GCDU errors. Specifically, the chemical amplified resist (CAR) induces the GCDU error from improper baking. This phenomenon becomes worse with negative CARs. The developing process is also a source of the GCDU error usually appears radially. This paper reports the results of the study of the impact of the global CD uniformity on mask to wafer images. It also proposes solutions to achieve better masks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.