A fiber optic refractive index sensor based on Fabry-Perot interferometer formed by two Chirped Fiber Bragg Gratings on a seven-core fiber is successfully demonstrated. A small part of the fiber cladding is etched to expose the outer 6 cores to the ambient environment. While optical modes supported by the outer 6-cores are affected by both temperature and refractive index changes of the surrounding liquid, the optical mode in the central core is affected by the temperature changes only. Because only a small part of the cladding is removed, the sensor maintains excellent mechanical strength and stability.
In this paper, we have demonstrated that the spectral bandwidth of a FBG can be modulated by embedding a single Fiber Bragg grating (FBG) sensor in a composite laminate. The bandwidth modulation was achieved by exploiting the birefringence of the embedded – FBG sensor, which was sensitive to the transverse strain and thus varies with temperature or axial load. Combining the bandwidth changes with the Bragg wavelength shift may enable measuring the simultaneous changes in temperature and axial strain using a single FBG sensor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.