This paper aimed to investigate if deep image features extracted via sparse autoencoder (SAE) could be used to preoperatively predict histologic grade in pancreatic neuroendocrine tumors (pNETs). In this study, a total of 114 patients from two institutions were involved. The deep image features were extracted based on the sparse autoencoder network via a 2000-time iteration. Considering the possible prediction error due to the small patient data size, we performed 10-fold cross-validation. To find the optimal hidden size, we set the size as a range of 6-10. The maximum relevance minimum redundancy (mRMR) features selection algorithm was used to select the most histologic graderelated image features. Then the radiomics signature was generated by using the selected features with Support Vector Machine (SVM), multivariable logistic regression (MLR) and artificial neural networks (ANN) methods. The prediction performance was evaluated using AUC value.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.