Three types of halide-perovskite-based fast-acting fluorescent materials have been demonstrated for high-speed visible light communication. All-inorganic metal-halide perovskite CsPbI3 was utilized to generate red color at 685 nm, and twodimensional (2D) hybrid organic-inorganic halide perovskite nanosheets, (PEA)2PbI4 and (PEA)2PbBr4 (PEA= C8H9NH3), with peak photoluminescence (PL) wavelengths of 525 nm and 408 nm, were respectively used for green- and blue-light emission. The materials were then embedded in the polymethyl methacrylate (PMMA) to improve their durability and flexibility in practical applications. Pumped by a 405-nm violet laser, the red and green phosphors exhibit –3-dB modulation bandwidths of 14 MHz and 193 MHz, respectively. For the blue phosphor, a 124-MHz –3-dB bandwidth was obtained by using a 375-nm UVA laser diode. Benefitting from either the short PL lifetime or high PL quantum yield, aggregate Gb/s data transmission was achieved in the communication link. Direct current biased optical orthogonal frequency-division multiplexing (DCO-OFDM) modulation scheme was implemented with an adaptive quadrature amplitude modulation (QAM) signal. The transmission net data rates of RGB phosphors are 0.51 Gb/s, 0.93 Gb/s, and 0.43 Gb/s, respectively. The corresponding average bit error ratios are 3.5×10-3, 3.6×10-3, and 3.6×10-3, which are below the 7%-overhead forward error correction (FEC) criterion. Taking advantage of the tunability of the halide perovskite materials covering the whole visible range could further fulfill high-speed color-pure wavelength-division multiplexing by using a single source with multiple luminescent materials emitting light at different wavelengths. Besides, combining luminescent materials with specific colors, simultaneous white-light illumination, and high-speed communication can also be realized.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.