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ABSTRACT   

With ultrasound imaging, the motion and deformation of tissue can be measured. Tissue can be deformed by applying a 
force on it and the resulting deformation is a function of its mechanical properties. Quantification of this resulting tissue 
deformation to assess the mechanical properties of tissue is called elastography. If the tissue under interrogation is 
actively deforming, the deformation is directly related to its function and quantification of this deformation is normally 
referred as ‘strain imaging’. Elastography can be used for atherosclerotic plaques characterization, while the contractility 
of the heart or skeletal muscles can be assessed with strain imaging.  

We developed radio frequency (RF) based ultrasound methods to assess the deformation at higher resolution and with 
higher accuracy than commercial methods using conventional image data (Tissue Doppler Imaging and 2D speckle 
tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the 
ultrasound beam direction, so 1D. We further extended this method to multiple directions and further improved precision 
by using compounding of data acquired at multiple beam steered angles.  

In arteries, the presence of vulnerable plaques may lead to acute events like stroke and myocardial infarction. 
Consequently, timely detection of these plaques is of great diagnostic value. Non-invasive ultrasound strain 
compounding is currently being evaluated as a diagnostic tool to identify the vulnerability of plaques. In the heart, we 
determined the strain locally and at high resolution resulting in a local assessment in contrary to conventional global 
functional parameters like cardiac output or shortening fraction.    
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1. INTRODUCTION  
After the introduction of ultrasound imaging for medical applications [1, 2] it has always been used to assess the 
morphological as well as functional information of organs. With ultrasound imaging the geometry can be visualized and 
quantified with excellent accuracy. Furthermore, the velocity of blood particles can be assessed using ultrasound Doppler 
imaging. Since the time required for acquiring a 2D image is only in the order of 10-50 ms, images can be acquired at 
high temporal resolution making it the ultimate technique for imaging rapidly moving or deforming structures. These 
advantages have positioned ultrasound imaging as the most frequently used modality for cardiovascular applications. 

Cardiovascular disease is one of the leading causes of death in Western Society [3]. For optimal treatment, geometric and 
functional imaging is of paramount importance. Echography or ultrasound (US) imaging is the most used imaging 
modality for diagnosis of cardiovascular disease [3]. US imaging is non-invasive, easily applicable, and has no 
potentially harmful radiation hazard. The great advantage of 2D US is the excellent temporal resolution which makes it 
especially suited for studying dynamic processes like, for example, closing of the heart valves . 

With the increase in computational power and the inherent high temporal resolution, in the last two decades many new 
developments were introduced to assess and quantify tissue motion and deformation in order to quantify its function or 
mechanical properties. During the last decade, two major breakthroughs occurred in ultrasound imaging: firstly, real-
time 3D cardiovascular imaging became available as a clinically useful tool. With the introduction of 2D matrix array 
transducers not just one longitudinal plane but a whole volume can be scanned by transmitting the echo pulses in a 
pyramid shaped volume [4]. In this way, the whole heart, or a substantial part of the vasculature, can be imaged in 3D. In 
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particular for imaging of the heart with its complex deformation pattern not confined to a single plane, real-time 3D 
scanning is beneficial [4].  

Secondly, new kinds of functional US imaging became feasible with the introduction of strain (deformation) imaging 
and motion tracking techniques [5]. Ultrasound strain imaging or elastography was first described in 1991 by Ophir and 
colleagues [5]. Elastography provides a strain image that is a representation of the elastic (mechanical) properties of the 
tissue. Since tumors have mechanical properties deviating significantly from surrounding tissues like breast or liver, 
elastography is in principle an excellent technique to identify and characterize these tumors.  For this reason, in the last 
decade of the last century this technique was mainly focused on tumor detection. But a tendency towards cardiac and 
vascular applications can be observed over the last 10 years [6-10]. In case of the heart, the strain images do not 
represent the mechanical properties of the tissue but are representing the contractile properties of the heart muscle. Since 
high resolution (2D) strain images are generated with these techniques, local dysfunction of the heart muscle can be 
identified and quantified. Commercial strain estimation software is based on tracking dominant image features: 
echograms are characterized by a ‘noisy’ appearance called speckles, and these speckles can be tracked in 2D and 3D 
datasets [11]. However, basic elastography studies have demonstrated that the deformation of tissue can be determined 
much more accurately by using the radio frequency (RF) ultrasound data. In contrary to the echo image, the RF signal is 
containing both amplitude and phase information and especially the phase information is very beneficial for tracking 
small displacements accurately [12]. The displacement of tissue is mostly determined by calculating the cross-correlation 
function of successively acquired RF data. It appeared that the cross-correlation value is also a valuable parameter to 
distinguish between the heart muscle and the fast flowing blood in the cavities. Therefore, this information can 
additionally be used to segment the heart muscle [13]. 

A relatively new application of strain imaging is vascular elastography to identify atherosclerotic plaque components. 
This method uses the principle that the pulsatile blood pressure deforms the vessel wall and plaque. The magnitude of the 
strain is not only related to tissue composition but is also a strong indicator of weak spots in the plaque surface [14]. This 
method was initially developed using intravascular ultrasound catheters [15] and is currently being transformed into a 
non-invasive technique [16].  

In this paper, the application of different techniques to quantify cardiac as well as skeletal muscle deformation will be 
reviewed. Furthermore, the application of strain compounding using beam steering to characterize atherosclerotic 
plaques will be discussed. 

2. CARDIAC STRAIN IMAGING 
2.1 Tissue Doppler Imaging 

In the nineties, assessment of myocardial function became feasible by means of Tissue Doppler Imaging[17]. By 
acquiring the Doppler signal produced by the moving myocardial tissue instead of the blood, an estimate of the tissue 
velocity became available. The hypothesis was that affected myocardial tissue would have a decreased velocity or an 
asynchronous velocity pattern in respect to normal myocardial tissue. This technique could be implemented easily in 
commercial ultrasound systems since it is based on Doppler techniques. The disadvantage of the velocity of the tissue is 
that non contracting myocardial tissue that is surrounded by still functional contracting tissue will have a similar velocity 
pattern as the normal tissue since it will be moved by the surrounding tissue. To overcome this problem, the next step 
was to determine the deformation of the myocardial tissue. Hans Torp and colleagues [18] introduced Doppler based 
strain imaging. By taking the difference between two velocity estimates along a Doppler trace and dividing it by the 
distance between them, the strain rate was assessed. Integrating this strain rate estimates over the cardiac cycle results in 
the strain curve. Since the strain in the cardiac muscle can only be determined along the ultrasound line this technique is 
inherently one dimensional. In this way, in particular regions the longitudinal strain can be determined using apical 
acquisitions and circumferential and radial strain using parasternal views.  

2.2 Speckle tracking techniques 

Nowadays, non-Doppler techniques are the most used techniques for cardiac and vascular applications [4;5]. Since high 
resolution (2D) strain images can be acquired at high temporal resolution, local dysfunction of the heart muscle can be 
identified and quantified by tracking dominant image features. Echograms are characterized by a ‘noisy’ appearance 
called speckles, and these speckles can be tracked [11]. Although the speckle presence changes with tissue deformation 
and motion, the correlation between subsequently acquired echo frames is high due to the high frame rates available. For 
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