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ABSTRACT 

Instrument equivalence and quality control are critical elements of multi-center clinical trials. We currently have five 
identical Diffuse Optical Spectroscopic Imaging (DOSI) instruments enrolled in the American College of Radiology 
Imaging Network (ACRIN, #6691) trial located at five academic clinical research sites in the US. The goal of the study 
is to predict the response of breast tumors to neoadjuvant chemotherapy in 60 patients. In order to reliably compare 
DOSI measurements across different instruments, operators and sites, we must be confident that the data quality is 
comparable. We require objective and reliable methods for identifying, correcting, and rejecting low quality data. To 
achieve this goal, we developed and tested an automated quality control algorithm that rejects data points below the 
instrument noise floor, improves tissue optical property recovery, and outputs a detailed data quality report. Using a new 
protocol for obtaining dark-noise data, we applied the algorithm to ACRIN patient data and successfully improved the 
quality of recovered physiological data in some cases.  

Keywords: quality control, ACRIN, diffuse optical spectroscopic imaging, frequency domain photon migration, multi-
center trial, standardization, instrument testing 

 

1. INTRODUCTION 

1.1. Diffuse Optical Spectroscopic Imaging of Breast Tumor Response to Neoadjuvant Chemotherapy 

Diffuse Optical Spectroscopic Imaging (DOSI) is a powerful tool for non-invasively measuring the concentrations of 
oxygenated hemoglobin (ctO2Hb), deoxygenated hemoglobin (ctHHb), water (ctH2O), and lipid (%lipid) in thick 
tissues.[1] Because of the high sensitivity of near-infrared (NIR, 650-1000nm) absorption spectra to the states of cells, 
vessels and matrix[2], tumor NIR absorption properties are being investigated as biomarkers that characterize tumor 
response to cancer therapy. Non-invasive DOSI endpoints based upon quantitative measures of tumor optical/functional 
properties can be obtained rapidly with no risk or discomfort to patients. The optical biomarkers generated by DOSI and 
related optical imaging technologies could be used as surrogate markers of pathologic response which is an established 
indicator of long-term patient survival.[3, 4] Our long-term goal is to provide oncologists with a simple, risk-free bedside 
tool that helps to inform medical decisions on chemotherapy regimen, duration, and surgical timing, thereby maximizing 
therapeutic response and minimizing unnecessary toxicity.  

Significant preliminary evidence suggests DOSI could meet this important clinical goal. Using a bedside-capable DOSI 
instrument, we reported the first in-human use[5], multi-patient study[6] and comparison with MRI[7] that suggested 
optical imaging technologies could monitor tumor response to neoadjuvant (i.e., pre-surgical) chemotherapy. Similar 
contrast mechanisms have been studied by other groups using related diffuse optical imaging approaches.[8-11] We 
recently reported in the largest known published clinical study (36 tumors) strong correlations between DOSI-measured 
optical biomarkers and the degree of pathological response.[12] New optical imaging biomarkers are also being 
discovered, such as “metabolic flares” (i.e., changes in ctO2Hb 1 day after therapy), baseline oxygen saturation (stO2) 
and spectral/spatial heterogeneity, that may allow for early prediction of final tumor pathological responses[13-15].   

Optical Tomography and Spectroscopy of Tissue X, edited by Bruce J. Tromberg, 
Arjun G. Yodh, Eva Marie Sevick-Muraca, Proc. of SPIE Vol. 8578, 85782M

© 2013 SPIE · CCC code: 1605-7422/13/$18 · doi: 10.1117/12.2008009

Proc. of SPIE Vol. 8578  85782M-1



 

 

1.2. Quality Control in Multicenter Studies 

Although these findings have generated considerable excitement, none of them have been validated in a multi-center 
environment. To meet this challenge, we are currently engaged in a multicenter clinical trial sponsored by the American 
College of Radiology Imaging Network (ACRIN, #6691). The primary aim of the ACRIN study is to evaluate whether a 
quantitative DOSI tissue optical index (TOI), defined as (ctHHb x ctH20)/(%lipid), can predict neoadjuvant 
chemotherapy pathologic complete response (pCR) by the mid-point of the therapy. TOI has been shown to be a high-
contrast index that localizes enhanced metabolic events such as tumors in breast tissue.[12, 16] The secondary aims of 
the ACRIN study are to examine additional quantitative DOSI endpoints at multiple timepoints during neoadjuvant 
chemotherapy and to correlate DOSI with other standard of care imaging and/or any magnetic resonance imaging 
(MRI).[12, 14] We currently have 5 identical DOSI devices, termed the “Laser Breast Scanner (LBS),” in place at five 
locations in the United States (Dartmouth, the University of Pennsylvania, Massachusetts General Hospital, UC San 
Francisco, and UC Irvine) that are measuring breast tumor response over the course of neoadjuvant chemotherapy 
treatment. Because data for the study is compiled from multiple devices and multiple operators, standardized methods for 
measurement and data processing are vital. To achieve this standardization, we have created a uniform training system 
for operators[17], a standardized measurement protocol[18], and a robust calibration and device performance evaluation 
system using tissue simulating phantoms.[19, 20] 

What we have lacked up to this point is a systematic method for objectively evaluating data quality and rejecting data 
that cannot be reliably processed due to noise or measurement errors. Data quality can vary widely across patients, 
measurement conditions and even over the course of individual measurement sessions. Sources of noise from the 
instrument, operator and tissue must all be characterized.  The wide range of tissue physiology across the numerous 
patients in the ACRIN 6691 study leads to data with a wide range of signal-to-noise ratios (SNR). Operator measurement 
errors such as poor probe-tissue contact, damaged optical/electrical connections and excess RF noise also lead to data 
with inadequate SNR or introduce artifacts. Currently, quality control is performed by the operator on a case-by-case 
basis. This can be effective, but it is time-intensive, operator dependent, difficult to standardize and mainly performed 
post data acquisition. An automated quality control system is desirable to effectively and uniformly filter out bad data 
while it is acquired, thus allowing for on-the-fly corrections to be made. In this paper we present a new quality control 
algorithm that achieves this goal and demonstrate its effectiveness on clinical data obtained in the ACRIN # 6691 trial. 

 

Figure 1. DOSI data processing procedure. FDPM phase and amplitude values and SS reflectance values are processed using 
an integrated algorithm to obtain tissue chromophore concentrations. Processing steps are shaded grey and data values are 
unshaded.  
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1.3. DOSI Measurement and Data Processing 

The DOSI devices featured in the ACRIN trial use integrated frequency domain photon migration (FDPM) and steady-
state (SS) reflectance methods to obtain broadband absorption coefficient (ߤ௔) spectra separate from tissue scattering. 
The absorption spectra are then fit with known tissue extinction spectra (hemoglobin, water and lipids) to obtain tissue 
chromophore concentrations. FDPM data is collected by intensity-modulating laser diodes at frequencies swept from 50 
to 600 MHz. Six wavelengths (660, 690, 785, 810, 830 and 850 nm) are used with fiber optic cables that deliver the light 
to the breast; diffuse reflectance is detected using an avalanche photodiode (APD) placed 28mm from the source optical 
fiber. The APD records the amplitude and phase shift of the collected light at each modulation frequency. SS data is also 
collected via diffuse reflectance, but the light source is a steady state broadband lamp and the detector is a grating-based 
spectrometer, which records intensity across 650-1000 nm. The entire data collection process is executed automatically 
by a GUI-based software package called EZDOS.[20] Both datasets are then processed together using the procedure 
diagrammed in Figure 1. First, FDPM data is fit to the diffusion equation using a semi-infinite boundary condition to 
obtain ߤ௔ and reduced scattering coefficient (ߤ௦′) values at the six discrete FDPM wavelengths.[21, 22] The discrete ߤ௦′ 
spectrum is then fit to a power law to obtain a full ߤ௦′ spectrum over the 650-1000 nm regime. Thus, the SS broadband 
reflectance is now only a function of absorption. The FDPM ߤ௔ values are then used to appropriately scale the SS 
intensity data to obtain absolute reflectance values. Using this reflectance spectrum and the ߤ௦′ spectrum, a numerical 
solution for ߤ௔ is found at every wavelength. Because the final spectra are largely dependent on the initial FDPM 
amplitude and phase information, we have decided to focus the quality algorithm on this portion of the data. 
 

2. DEVELOPMENT OF AN AUTOMATED QUALITY CONTROL ALGORITHM 

The current implementation of the automated quality control algorithm focuses on FDPM data only at this time and is 
applied in two parts: (a) individual laser diode modulated amplitudes and (b) collective optical property consistency. 

 

Figure 2. Modulated dark amplitude measured on the UCI DOSI instrument participating in the ACRIN trial. The 
modulation of each laser diode produces different levels of RF noise, resulting in a unique noise floor for each diode. 
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2.1. Filtering Phase and Amplitude 

Each laser diode FDPM data (i.e., multi-frequency amplitude and phase) is first cleaned and filtered. The algorithm first 
characterizes measurement noise. It is necessary to take a “dark measurement” to find the true noise floor at each 
modulation frequency (similar to the “dark noise subtraction” measurement routinely employed in conventional 
spectroscopy). The “RF dark noise” is achieved by placing the DOSI probe on a sheet of black rubber to block all laser 
light sources and running five standard frequency sweeps. Multiple sweeps provide a mean and standard deviation of the 
“dark RF amplitude.”` It is important to modulate the laser diodes under the same conditions as the tissue measurement 
when taking a dark measurement because the system noise floor of the system depends upon the specific laser diode and 
RF power delivered. Figure 2 provides a sample case; note that each diode has a different frequency-dependent noise 
floor. The EZDOS software has been modified to prompt the operator to take a dark measurement during the 
calibration procedure. After the dark measurement, data is collected normally.   
 
When the data is processed (i.e., calibrated and then fit to the diffusion model), the noise-filtering portion of the 
algorithm compares the amplitude at each measurement data point to the dark amplitude at the same frequency for the 
same laser diode. Amplitudes at a given frequency that are within two standard deviations of the corresponding dark 
amplitude are excluded from the subsequent FDPM ߤ௔ and ߤ௦′ fits. The effect of noise-filtering on a typical noisy 
measurement taken with the ACRIN DOSI system at UC Irvine (UCI) is shown in Figure 3. This process has the 
advantage of selecting a unique frequency range for each laser diode and each measurement and can be done 
automatically. Operator-performed quality control generally picks one continuous frequency range for the entire data set, 
so the algorithm is much more sensitive to changes in noise levels throughout the measurement and is able to 
independently determine the appropriate frequency range for each laser diode. 
 

 

Figure 3. FDPM fits on noise-filtered data from a noisy measurement. The noisy data (grey Xs) is effectively rejected while 
higher SNR data (black points) is kept, which is most apparent in the phase. Note that the algorithm is able to remove noise 
that is interspersed throughout the data, not just in one continuous block. 

 

2.2. Filtering Optical Property Values 

The second phase of the quality control algorithm is designed to filter out FDPM data that is skewed by sources of error 
not corrected by noise filtering. The ߤ௦′ values over the entire 650-1000 nm wavelength range are calculated from the 
slope of the six FDPM  values, so they are strongly affected if the value for one diode is suspect. The algorithm takes ߤ௦′
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′௦ߤ
Normally, the processing code runs a least-squares power law fit on the six ߤ௦′ values using a Levenberg-Marquardt 
algorithm and uses the resulting fit to calculate the full ߤ௦′ spectrum; thus we are constraining the scattering to fit this 
model. If the average squared residual value of this fit is above a preset threshold, the quality control algorithm runs six 
additional fits using each possible combination of five ߤ௦′ values (a different diode excluded each time). If the average 
squared residual value for one of these fits is less than half the value for the all the other fits (including the original six-
diode fit), then this fit is used to calculate the ߤ௦′ spectrum, and the diode that was excluded from the fit is also excluded 
from the broadband ߤ௔ fit. If no fit meets this criterion then the original six-diode fit is used. A comparison of a ߤ௦′ 
spectrum with and without eliminating a diode is shown in Figure 4. The diode-elimination process is limited in that it 
requires that only one diode has skewed data, although the algorithm could in principle be expanded to additional 
wavelengths. Generally because measurements with two or more poor FDPM data rarely fit well using any combination 
of diodes, and should simply be flagged as suspect. Data with only one bad diode, on the other hand, can often yield high 
quality fits if the diode is removed.  

 

Figure 4. Optical property fits without (left) and with (right) automated diode elimination. The algorithm correctly 
eliminates the outlier and substantially improves the quality of the chromophore fit. 

 

2.3. Quality Control Reporting 

The progress of the QC algorithm is summarized in a detailed data report that is output at the conclusion of data 
processing. The purpose of this report is to better inform the operator about the exact steps taken by the algorithm and 
about which data files are suspect, thus allowing for a review after all data has been processed. The following 
information is provided in the data report: 

• Files with diodes with less than 25% of points above the noise floor are flagged. The diodes are identified. 
• Files with successful diode elimination are flagged, and the eliminated diode is identified. 
• Files with unsuccessful diode elimination attempts are flagged. 
• For each file, a full spreadsheet of which points were above the noise floor and which were below is saved. 
• The total number of points above the noise floor, fraction of points above the noise floor, and average amplitude 

for each diode in each file are recorded. 
• The noise floor used by the algorithm is saved in a file. 
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advantage of this fact by comparing power law fits of different combinations of FDPM  discrete spectra values. 
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The data report allows the operator to see where the algorithm was able to improve data quality and where it identified 
problematic data that it cannot fix. In the following section, we present two cases illustrating the effectiveness of the 
quality control algorithm and the data reporting system. 

 

3. QUALITY CONTROL ON ACRIN 6691 PATIENT MEASUREMENTS 

3.1. ACRIN Clinical Data Acquisition 

The general framework for DOSI data acquisition has been previously described and has been standardized for the 
ACRIN #6691 trial.[12] The patient data used in the examples below were taken from the ACRIN #6691 study. All 
subjects provided informed written consent, and all patient measurements were performed in strict adherence to the 
master clinical protocol (#6691) approved by ACRIN that was subsequently reviewed and approved by the review 
boards for each participating research center. 

 

3.2. Test on Noisy Clinic Data 

Figure 5 shows a pair of 2-dimensional maps of tissue optical index (TOI), defined as (ctHHb · ctH20)/(%lipid), that was 
generated by manually scanning the DOSI probe across a patient’s breast.[18] The two images are constructed using the 
same data; the left is processed without any quality control and the right is processed using the quality control algorithm. 
The areola (which typically shows high TOI due to the glandular tissue) and tumor are indicated by the two circular 
regions in both images. In the right image, stars mark points that the algorithm flagged for low amplitude; circles mark 
points that were flagged for low amplitude and that had a diode removed from broadband processing; triangles mark 
points that were flagged for low amplitude and that had poor scattering fits that were unable to be fixed via diode 
removal. The rectangular sections in the left image are characteristic of data points with poor chromophore fits resulting 
in either extremely high or zero concentrations (i.e., unrealistic physiology). These regions are completely resolved after 
application of the quality control algorithm; only one point still fits poorly after the noise filtering and diode elimination 
steps and the corrected points now have physiologically consistent and realistic values. Before applying the quality 
control algorithm, nearly a quarter of the points in the tumor region were non-evaluable and would have to have been 
discarded. For smaller tumors (limited number of points) or assessment of tumor spatial heterogeneity, loosing these 
points this could be problematic. The quality control algorithm allows us to process the noisy points and keep the dataset. 
We note that in the past manual filtering would have resolved some of these errors, but the quality control algorithm 
resolves the errors in a consistent and objective manner. 

 

3.3. Unresolvable Data 

In contrast to the above section, Figure 6 shows a pair of TOI maps from a different patient in the ACRIN clinical trial. 
The maps are once again constructed from the same data; the right image uses the quality cotnrol algorithm and the left 
image does not. Tumor and areola regions are marked, triangles mark points with poor scattering fits that could not be 
improved via diode removal and stars mark points with a diode removed.  No points in this data were flagged for low 
amplitude.  The combination of poorly fitting points and low noise is a clear indicator of experimental error. In this case, 
it was determined that at numerous times throughout the measurement, the operator was removing the probe from the 
patient’s skin before every diode was modulated, resulting in bad data on the diodes that were modulated last. Although 
the algorithm is unable to resolve such an error, the information in the data report serves as an easy indicator that the 
dataset should be excluded from the study. Upon subsequent review, it was determined that an instrument timing 
malfunction was the cause of low data quality. 
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Figure 5. Effect of quality control (QC) algorithm on TOI maps for a patient measurement. Stars mark points flagged for 
low amplitude; circles mark points that were flagged for low amplitude and that had a diode removed from broadband 
processing; triangles mark points that were flagged for low amplitude and that had poor scattering fits that were unable to be 
fixed via diode removal. The algorithm fixes the poor data points allowing the entire tumor area to be evaluated. 

 

 

Figure 6. Example of QC algorithm not able to resolve problems in TOI maps. Triangles mark points with poor scattering 
fits that could not be improved via diode removal and stars mark points with a diode removed. Numerous points flagged for 
bad fitting but not for high noise indicate other sources of error.   
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4. DISCUSSION 

The above examples serve as a proof of concept that the quality control algorithm can effectively, consistently and 
objectively improve data and fit quality by filtering out noise as well as and identify data with unresolvable sources of 
instrument/operator error. Without quality control, both sets of data would be deemed non-evaluable, and the patients 
would have to be excluded from the study. In the 41-patient study described by Udea et al. (ref [8]), six patients had to be 
excluded from the analysis due to poor SNR. We applied the current quality control algorithm to these excluded patients 
and found that three of them could be corrected. The quality control algorithm would have thus been able to reduce the 
number of excluded patients in this study by half. It is important to note that our previous subjective operator-based 
quality control was not able to adequately clean the noise in these excluded patient’s data; in contrast the quality control 
algorithm could have cleaned this data. Patient accrual can be difficult and is often the limiting factor to completing 
studies like ACRIN #6691. The more sophisticated data processing performed by the quality control algorithm ensures 
that if data is at all useable, it is not necessarily rejected from the study. 

In addition to increasing patient accrual, the quality control algorithm also provides an efficient system for identifying 
and characterizing different sources of error. In the data presented in Section 3.3, the large number of flagged points 
quickly alerts the operator of potential problems with the data set. The data report allows us to know exactly which 
points to investigate as well as details on why those points were flagged; for this particular data, we noticed that there 
were no low-amplitude points and that every diode that fit poorly was modulated at the end of each measurement 
sequence. This led us to the conclusion that the probe was being lifted off the surface of the tissue too early yielding 
points that did not fit the semi-infinite model but had high amplitudes due to reflections off the tissue surface. We were 
then able to immediately contact the collaborators who had taken the measurements and inform them of the error, 
ensuring that no further measurements were compromised. An oversight process such as this one is vital to a multi-center 
trial such as ACRIN #6691 because it provides a fast, consistent way of monitoring measurements from every sight, and 
gives us the information we need to help every operator take accurate, repeatable measurements. The newly added dark 
measurement is fast, easy to perform, and is the only additional measurement step required to conduct the entire 
procedure; all other steps are done automatically by the processing code. We are constantly striving to reduce site and 
operator dependence in our measurements, and the quality control algorithm and data reporting system do so extremely 
effectively.   

             

5. CONCLUSION 

We have developed a novel automated quality control algorithm for DOSI instruments that improves data fitting, 
provides a standardized method of identifying poor quality data, and increases measurement quality and repeatability 
across the ACRIN sites. Since its implementation in late 2012, we have already demonstrated the algorithm’s 
effectiveness in several sets of patient data. As we continue to include the dark measurement step in the patient 
measurement procedure we will be able to compile a larger body of quality control processed data, which we will use to 
further analyze the algorithm’s effectiveness.  
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