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ABSTRACT

Hysterectomy is the most common major operation performed in the United States with
dysfunctional uterine bleeding as one of the major indications. The clinical needs for
simple and safe endometrial destruction are essential. Photodynamic therapy (PDT) may
offer a simple and cost effective solution for the treatment of dysfunctional uterine
bleeding. The dosimetry is discussed for the case of topical application of the
photosensitizer. This technique might be the method of preference because undesired side
effects such as skin photosensitization that is typical for systemically injected
photosensitizers, can be avoided. Effective PDT requires a sufficient amount of light
delivered to the targeted tissue in a reasonable period of time. A trifurcated optical
applicator consisting of three cylindrical diffusing fibers has been constructed, and this
applicator can deliver a typical required optical dose of about 50-100 J/cm? to the full
depth of the endometrium for an exposure time of 10-20 min.
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INTRODUCTION

Photodynamic therapy (PDT) of the endometrium implies the introduction of a light
delivery system through the uterine cervix following administration of a photosensitizer.
The human endometrium has unique proliferation and neovascularization characteristics.
Depending on the phase in the menstrual cycle its thickness varies between 1-5 mm [1].
From the structural standpoint, the thick myometrium surrounding the thin endometrial
layer can serve as a "barrier” to protect vital pelvic organs during illumination. Several
experiments in rats and rabbits support the thesis that high uptake and retention of various
photosensitizers by the endometrium following topical application [2-4] is feasible.

The clinical needs for a simple and safe endometrial destruction are essential.
Hysterectomy is the most common major operation performed in the United States with
dysfunctional uterine bleeding as one of the major indications leading to surgery.
Photodynamic therapy may offer a simple and cost effective solution for dysfunctional
endometrial bleeding and could avoid a significant number of more invasive surgical
procedures.

The present study was designed to analyze the cytotoxic dose for topically adminstered
photosensitizers [5] The drug is installed in the uterine cavity for a period of a few hours
before irradiation. The irradiation is performed with the use of a specially designed
trifurcated applicator that enables a sufficient optical dose to be delivered to the full depth
of the endometrium without inducing hyperthermic effects.[6-8]
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OPTICAL DISTRIBUTION

The optical distribution in tissues can for most PDT applications be adequately
described by the diffusion approximation of the more general equation of radiative
transfer, [6]

This approximation can be expressed,
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where ¢ is the optical fluence rate, q is the source density of diffuse photons, D is the

optical diffusivity, J is the optical penetration depth and c is the velocity of light.
The optical diffusivity D can be expressed,
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where 1, and p, are, respectively, the optical absorption coefficient and the optical
scattering coefficient. The parameter g is the average cosine of the scattering angle and
the quantity p,' = (1— g)u, is the reduced scattering coefficient.

The optical penetration depth is given by,
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Multiple reflections will build up the fluence rate in the cavity until the radiation
transmitted through the cavity wall is equal to the light coupled into the cavity. A
relationship between the optical power coupled into the cavity and the optical fluence
rate can be obtained by taking the photon flux vector at the surface of the cavity equal to
the direct unscattered irradiation from the applicator. The expression for fluence rate in
the cylindrical symmetrical case where a long cylindrical applicator is positioned
coaxially in a uterine cavity, e.g., in the murine uterine horn, will be

P
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where P is the optical power per unit length of the applicator and a is the radius of the
cylindrical cavity. The functions Ko and K] are, respectively, the modified Bessel
functions of zero and first order.

The ratio between the actual fluence rate in the inner layer of the lumen wall and the
incident unscattered radiation can be expressed,
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This ratio is dependent on the radius of the lumen (or with the radius of the applicator
for applicators embedded in the tissue) and the optical properties of the tissue. The optical
penetration depth of uterine tissue at 630 nm wavelength is in the range of 2.6-4 mm. [8-
9] The ratio is about 2.8 in the case of a typical size.cylindrical applicator of 1 mm
diameter is embedded in uterine cavity with a typical optical penetration depth and

diffusivity of, respectively, 4 mm and 8.7 104 m2/s. [8]
TOPICAL APPLICATION

The drug solution will be instilled into the uterine cavity and the drug will be allowed to
diffuse into the endometrium. The optical radiation will be carried out when an adequate
drug concentration has been established over the full thickness of the endometrium.

The transport of drugs with small molecular weight in the endometrium can be
expressed by a diffusion process of the form [5],

VIN-——-—=0 (5)

where N, K, and T are, respectively, the density, the diffusivity and the relaxation time.

The operator V? is the Laplacian operator and t is the time.

The drug distribution at time t after exposing the endometrial surface to a constant
concentration can, provided that a possible diffusion barrier at the surface can be
neglected, be expressed, Eq.5,
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where Ny is the concentration at the endometrial surface and N(x,t) is the concentration at
depth x at time t.

When depletion of the drug due to decomposition and clearance can be neglected, i.e.,
the relaxation times 7 = oo, the expression simplifies to the term on the right hand side
of the Eq.6.

The diffusivity of a typical photosensitizer such as 5-aminolevulinic acid (5-ALA) in
tissue has not been reported. However, an order of magnitude estimate can be obtained by
using the diffusivities for compounds with approximately the same molecular weight. (5-
ALA HCI mol.wt. 168) The diffusivity for oxygen, acetic acid (mol.wt. 60) and sucrose
(mol.wt. 342) in water at 20 OC are, respectively, 1.8-10-9 , 0.88-10-9 and 0.45-10-9

m?2/s. [10] An example of the drug distribution for a value of the diffusivity equal to

«=10"2 m2/s is shown in Fig.1 . The drug concentration at the surface is normalized to
unity, i.e., No=1.

X
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Fig.1 Drug distribution versus distance from the uterine cavity (mm) and time after
instillation (min.).

The graph demonstrates that 5-ALA distribution to a depth of 4-5 mm is within 50%
of the surface value after about 5 hours of diffusion.

The distribution of the photodynamically active compound will the case of 5- ALA, be
dependent on the conversion rate to protoporphyrin IX. The PpIX distribution can,
provided that diffusion is negligible, be expressed,

P _an-L (7
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where o expresses the conversion rate. The protoporphyrin distribution is P and tp is its
relaxation time. When clearance of PpIX as well as depletion of 5-ALA due to the
conversion process both are negligible, the protoporphyrin distribution can be expressed,
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The distribution at the surface where the concentration of 5-ALA is constant and equal

to No, increases then linearly with time, i.e., P(x=0,t)=0Not. The generation of PpIX at
deeper layer will, however, be delayed because time is required for 5-ALA to diffuse to

these regions.
The distribution of PpIX versus depth and time is shown in Fig.2. The diffusivity of

5-ALA is the same as used in Fig.1, i.e., k=10"9 m2/s. The concentration is normalized to
the value at the surface after 5 hours .
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Fig.2 Protoporphyrin IX distribution versus distance from the uterine cavity (mm) and
time after instillation (min.). Normalized to concentration at surface after 300 min. of

diffusion.

The corresponding distribution when it is normalized to the value at the surface at
same instant of time is shown in Fig.3
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Fig.3 Protoporphyrin IX distribution versus distance from the uterine cavity (mm) and
time after instillation (min.). Normalized to the concentration at the surface at the same

time.

The depletion with depth of the PpIX concentration will, under the specified conditions,
be more pronounced than for 5-ALA. The reason for this is the delay of the conversion
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process due to the time required for the diffusion of 5- ALA. The concentration of PpIX
at a depth of 4-5 mm is, however, 20-25% of the value at the surface after Sh.

If , on the other hand, the relaxation time of PpIX is fast enough to establish a local
equilibrium almost instantaneously, the distribution will be given by,

P(x,1) = T,0N(x,1). )]
The PpIX distribution is in this case always proportional to the 5-ALA distribution. The
depletion of the PpIX concentration with distance will be smaller than in the case

discussed in Eq.8. However, the absolute value of the concentration will also be smaller.

CYTOTOXIC DOSE

The sensitizer will photo decompose during irradiation. The bleaching effect is

characterized by the bleaching parameter 0 that expresses the amount of optical fluence
required to photobleach the drug concentration to 1/e, i.e., to 37 % of the initial

concentration. The amount of singlet oxygen Q generated by a total optical dose ‘¥ can
thus be expressed, [11,12]
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where k is a parameter characterizing the efficiency of the singlet oxygen generation
process and C=C(x,t) is the local concentration of the photodynamically active drug
during the irradiation. The corresponding drug concentration before the irradiation is Co,
Further on, it is assumed that the change in the concentration during the irradiation
period only is due to bleaching and that depletion due to other mechanism is negligible.

The optical dose ¥ can when the light level is kept constant during the irradiation, be
expressed,

l/[: ¢Atirr (11)

where At, . is the radiation time and the fluence rate ¢ is given by Eq.1

r

The drug concentration before irradiation can be expressed, Eqs.6,8,9
Co = P(x,Aty) (12)

where Atd,.ﬂ is the diffusion time, i.e., the time between injection of the drug in the uterus
and the irradiation.

CLINICAL APPLICATORS

The positioning of the trifurcated applicator based on three cylindrical diffusely
emitting fibers is shown in Fig.4. The collapsed uterine cavity has a triangular shape.

The geometrical dimensions can vary individually, but 30 mm long sides represent a
typical sized uterus. The middle fiber is installed along the uterine axis whereas the two
other fibers are positioned along the two sides of the triangle.
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Fig.4 Fiber applicator installed in the collapsed uterine cavity.

The most critical difficult region to obtain an adequate light distribution is in the upper
part of the uterine cavity, i.e., the fundus, where the distances between the individual
fibers are maximal.

The optical dose distribution in this region is calculated a the sum of contributions from
three semi-infinite long fibers. See Eq.4 . An example of the optical distribution is shown
in Fig.5. The orientation of the x and y axis in Fig 5 corresponds to the corresponding
axis in Fig.4 The diameter of the fibers is 0.8 mm, the optical power per unit length of

each fiber is P=100 mW/cm and the exposure time is Atjrr= 600 s. The optical
penetration depth of uterine tissue is taken = 4 mm and the reduced scattering
coefficient is pg1=0.8 mm-1.[7]
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Fig. 5 Optical dose in J/cm? vs. distances from uterine axis.

The corresponding distribution of the cytotoxic dose is shown in Fig.6. The diffusivity
of the drug is k=10"9 m2/s, the diffusion time is Atdiff=5 hours and the bleaching
fluence is 75 J/cm?2. This bleaching fluence corresponds to the value reported for
Photofrin II and corresponding values for PpIX have been reported in the range of 30-50
J/em?2-[5,11]- The drug distribution is calculated in accordance with Eq.9 and the
drug concentration at the surface of the endometrium is taken to correspond to a
threshold damage fluence of 30 J/cmZ2. The maximum obtainable cytotoxic dose will,
since the bleaching fluence is 75 J/cm2, the be 2.5 times the threshold value.
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Fig.6 Cytotoxic dose vs. distances from uterine axis. Dose normalized to a threshold
dose equal to unity.
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These calculations thus demonstrate that the selected set of parameters will give a
cytotoxic dose above the threshold for tissue necrosis to a depth of 2-3 mm. This depth of
necrosis is limited by the drug concentration rather then the optical fluence; the optical
fluence is above 100 J/cm? to a depth of 4-5 mm as shown in Fig.5. The drug
concentration can in principle be increased by increasing the diffusion time. However,
necrosis to a depth of 2-3 mm can be adequate if the treatment is carried out at an optimal
time during the menstruation cycle.

CONCLUSIONS

The analysis indicates that irradiation of the endometrium by a trifurcated optical
applicator inserted into the human uterus can deliver a sufficiently large light dose to
initiate a photodynamic destruction of the entire layer. An emitted optical power per unit
length of the applicator of 100 mW/cm can deliver a sufficient fluence to the full
thickness of the endometrium and the myometrium after 10- 20 min. of exposure. The
cytotoxic drug can be administered systemically, but the analysis indicates that the drug
can be applied topically if a time of 4-5 hours is allowed for the drug to diffuse into the
tissue before irradiation.
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