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ABSTRACT  

Hyperspectral Imaging (HSI) is a growing field in tissue optics due to its ability to collect continuous spectral 
features of a sample without a contact probe. Spatial Frequency Domain Imaging (SFDI) is a non-contact wide-field 
spectral imaging technique that is used to quantitatively characterize tissue structure and chromophore 
concentration. In this study, we designed a Hyperspectral SFDI (H-SFDI) instrument which integrated a 
supercontinuum laser source to a wavelength tuning optical configuration and a sCMOS camera to extract spatial 
(Field of View: 2cm×2cm) and broadband spectral features (580nm-950nm). A preliminary experiment was also 
performed to integrate the hyperspectral projection unit to a compressed single pixel camera and Light Labeling 
(LiLa) technique. 
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1 INTRODUCTION 
Human skin and subcutaneous tissue is a composition of multiple chromophores mainly melanin, 
oxy/deoxy/methemoglobin, fat and water. Since these species have overlapping absorption features in the visible 
and near infrared regions, accurate quantification of their concentrations requires multiple spectral data points. In 
this regard, Hyperspectral Imaging (HSI) is a superior tool that provides continuous spectral output and can enhance 
chromophore fitting based on absorption coefficients at multiple wavelengths. To achieve accurate absorption 
coefficient values at each wavelength, contribution of tissue scattering needs to be subtracted from raw reflectance 
data.  
 
Spatial frequency domain imaging (SFDI) is a tissue spectroscopic imaging technique that decouples absorption 
from scattering by projecting structured illumination (1-4) at multiple spatial frequencies onto a sample and captures 
diffuse reflectance light with a camera (5, 6). SFDI has potentials to be implemented in a variety of areas including 
wound healing, skin lesions, and immune response (7-14).We have developed a hyperspectral light projection unit 
of a SFDI system which is powered by a supercontinuum laser and a wavelength-tuning optical configuration. The 
proposed hyperspectral SFDI system extracts tissue optical properties, absorption and reduced scattering, at 
extremely fine spectral resolution in the 580-950nm region. 
 
Here, we perform tissue simulating phantom studies to demonstrate sensitivity of optical property extraction in a 
broad spectral region. We also investigated potentials of the hyperspectral projection unit to be integrated to a 
compressed single pixel camera and Light Labeling (LiLa) technique. 
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concentration in each of them. We added water-diluted acetone to our FHI5832 dye. The 5th sample that we 
measured was extra-virgin olive oil with absorption peaks at 675 and 920nm. We added known amount of sonicated 
TiO2 powder to olive oil to introduce turbidity and therefore light scattering properties. These 5 samples were 
measured using the H-SFDI instrument in the 580-950nm range at 1000 spectral bins.  As it is shown in Fig 2(a), the 
absorption spectra shape of these samples match with their expected absorption spectra. Absorption contribution 
from the main solvent, water, is also detected for the first 4 solution at wavelengths longer than 850nm. These 5 
samples have been calibrated against a silicone-based phantom with known optical properties which naturally shows 
an absorption increase in the 890-910nm range. Since we noticed a dip in absorption values for these samples in the 
same spectral region, we believe there may be some cross-talk between each sample and its calibration phantom. 
Figure 2(b) shows reduced scattering spectra for these 5 samples. As it was expected, dominant scattering properties 
of the water-soluble dyes arise from Intralipid. Since these solutions possess similar Intralipid concentrations, their 
reduced scattering spectra line up with each other.  

(a) (b) 
Fig. 2 (a) Plot of bulk  spectra and (b)  spectra for 5 samples: 3 water-soluble dyes 1 acetone-soluble dye with 1% Intralipid 

concentration, and olive oil. 

Figure 3 shows absorption coefficient maps at five different spectral bins. The initial optical design of the H-SFDI 
instrument was to produce a 4cm×6cm Field of View (FOV). However, we noticed spatial heterogeneity in 
calibrated reflectance maps which eventually could cause artifacts in both absorption and reduced scattering maps. 
We therefore narrowed down the FOV to a central 2cm×2cm crop of the initial FOV. 
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another random pattern can be about 8% difference in photodiode intensity output depending on measurement 
phantom. A stack of these intensity values acquired from the photodiode of the camera are finally inserted to a CS 
algorithm for image reconstruction. However, we confronted 1-2% random source noise both spectrally and 
temporally, which distorted the CS reconstructed images when it came to SFDI workflow. In particular, this was a 
problem with respect to the reconstruction of AC frames. In future work, other intensity calibration approaches in 
the frequency domain can be applied to this instrument so that raw reflectance images provide enough signal-to-
noise Ratio (SNR) for accurate quantification of optical properties. 

5 CONCLUSION 
We developed a hyperspectral SFDI (H-SFDI) instrument by integrating a supercontinuum laser source to a 
wavelength-tuning optical configuration and pattern projection unit. Using a high-speed sCMOS camera, this system 
allowed us to calculate tissue phantom’s optical properties, absorption and reduced scattering, over a 2cm×2cm 
FOV at more than 1000 spectral bins. Future work will emphasize validation of the optical property values achieved 
using the H-SFDI instrument against results from a conventional spectrophotometer. Imaging speed is another area 
that needs to be improved. The slit mounted on a linear stage is a limiting factor in terms of achieving sub-second 
image-cube acquisition. Other line scanning techniques such as using a spiral function print on a rotating disk can 
potentially improve imaging speed.  
 
We also explored utilizing the LiLa technique to simultaneously encode multiple spectral bins in the frequency 
domain. A single pixel camera powered by CS technique was then used on the detection side to decode each spectral 
component and reconstruct images of them. Although the single pixel H-SFDI suffered from low SNR due to laser 
source oscillations and wobbling noise from the LiLa disk, we managed to reconstruct images of a heterogeneous 
tissue phantom at multiple spectral bins. These results suggest that our versatile H-SFDI instrument powered by a 
supercontinuum laser source provides a framework to quantify tissues optical properties in a broad spectral range 
and at extremely fine spectral resolution. This can open an opportunity to rigorously look for additional tissue 
chromophores such as fat, water, and collagen which play an important role in applications such as wound healing 
and inflammation.     
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