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ABSTRACT   

Symmetries in the propagation of a wavefield occur due to constraints, imposed either by the structure of an optical 
element/system or by the propagation medium. The spatial properties of a wavefield may be influenced by mirror 
symmetry, lateral inversion, translational and rotational symmetry. Here, we discuss various examples of light 
propagation under the constraints of specific symmetries. These include general aspects of light propagation, the design 
of micro-optical systems, rotational symmetries that occur in discretized diffractive optical elements as well as spatial 
and spatio-temporal properties of self-imaging wavefields.   

Keywords: optical propagation, symmetry, systems design, diffraction. 

1. INTRODUCTION  
Symmetries are ubiquitous in daily life and play an important role in all branches of the natural sciences 1. Principles of 
symmetry are fundamental to theoretical physics and mathematics. Symmetries are at the origin of the conservation laws 
of physics, for example. However, the violation of symmetry is also built into physics at various levels, most well-known 
is the violation of parity in beta decay. Here, we focus on symmetries occuring in and affecting optical wavefields. The 
spatial properties of a wavefield may be influenced by mirror symmetry (longitudinal inversion), lateral inversion, 
translational and rotational symmetry. The temporal properties may also be subject to certain symmetries, as, e.g., parity-
time symmetry. The study of symmetries may be useful for the basic understanding of light propagation as well as for the 
specific design of a component or system. Symmetries have thus been investigated in various regards, e.g., from a 
geometrical-optics point of view 2, for describing spatial-temporal behavior of a multimode optical oscillator 3 and for 
introducing the concept of supersymmetry into the design of optical structures 4. 

A wavefield !  propagating in z-direction may be described by its angular spectrum !  by 

!     (1) 

where !  and !  are the lateral components of the k-vector, the term !  describes propagation in z-direction. 
Symmetries are due to constraints in the propagation, caused by the geometry of an element/system or by specific 
properties of the propagation medium. The four symmetries named above may be described mathematically by using the 
k-vector formalism (Table 1). In the following, we consider several examples of symmetries in the propagation of 
coherent and incoherent wavefields. 

Table 1. Symmetries affecting wave propagation. Note, that here just one lateral k-component ( !  and ! , respectively) is considered. 
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2. SYMMETRIES IN WAVEFIELDS 
2.1. Mirror symmetry (longitudinal inversion)  

When a light ray is reflected from a mirror positioned in an (x,y)-plane, its ! -component gets inverted: ! . 
Obviously, this is the central equation of reflective optics, in general. A Fabry-Pérot resonator represents an important 
example, where mirror symmetry plays a role 5. The field emitted from a two-mirror resonator of length L is periodic in z 
with period ! , which leads to a discretization of the lateral k-vector components, i.e., with n as an integer 
number > 0, one gets:  

 !      (2) 

Figure 1. Reflection from a mirror, transmission through a Fabry-Pérot resonator and transmitted angular spectrum. 

2.2. Lateral inversion  

Spatial inversion symmetry is usually considered at the molecular scale, it may have certain consequences for the 
implementation of nonlinear optical processes 6. Here, we consider lateral inversion at the systems level which occurs 
typically in reflective systems, particularly, in systems with tilted optical axis. Examples include the Offner imaging 
spectrometer 7,8 and microoptical “PIFSO”-systems 9 (planar integrated free-space optics, see Fig. 2). For the design of a 
system with a tilted optical axis, lateral inversion (i.e., mirror symmetry with respect to a lateral axis, for example, the y-
axis) may be used conveniently 10. If  (here just 1D) represents the phase generated in plane F by a point source in 
I, while !  is the phase necessary to focus to diffraction-limited spot in O. Aberrations are given by 
! . For ! , it is !  and thus aberrations with 
antisymmetric terms (i.e.,  ! ) cancel out. 

Figure 2. PIFSO system, 3D view and side view. I: input plane, F and F’: Fourier planes, O and O’: output planes. The 
side view shows optical system folded into the substrate and a corresponding (virtual) unfolded 4f-system. 
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2.3. Translational symmetry (lateral periodicity) - coherent light 

Lateral periodicity of a wavefield (described by a discrete angular spectrum) leads to a longitudinal periodicity (at least, 
for paraxial propagation): 

!     (3) 

A well-known example is the case of Talbot self-imaging 11 in coherent light where a grating is illuminated by a plane 
wave. “Images” of the grating can be observed at distances which are multiples of the Talbot distance !  
(where !  is the lateral period and !  is the wavelength (Fig. 3). The self-imaging phenomenon is often referred to for the 
basic understanding of light propagation and its applications to interferometry.  

Figure 3. Talbot self-imaging. 

A more general case of self-imaging is given by the analysis presented by Montgomery 12. He asked the question how a 
wavefield has to be composed in term of its spatial frequencies in order to yield longitudinal periodicity. The answer is 
that is has to consist of spatial frequencies as given by eq. (2). The conventional Talbot case can be viewed as a special 
(i.e., the paraxial) case of Montgomery self-imaging.  

2.4. Translational symmetry (lateral periodicity) - partially coherent light 

Coherent self-imaging as described above has a well-known analog for the case of incoherent illumination, known as the 
Lau effect 13,14. Here, the setup consists of two gratings, G1 and G2. Upon illumination with monochromatic, yet spatially 
incoherent light, G1 (an amplitude grating) generates a mutual coherence function in the plane of G2 which is laterally 
periodic, according to the van Cittert-Zernike theorem 15. If, under suitable conditions, the period of the mutual intensity 
function is the same as the period of G2, high-contrast interference fringes are observed at infinity (Fig. 4). 

Figure 4. Lau effect, a diffraction experiment with incoherent illumination. 

u (x , z = 0) = u (x + Δx , z = 0) ⇒ u (x , z ) = u (x , z + Δz )

zT = 2p2 /λ
p λ

z
p

λ

x

zT

m(zT/4)

z

f

interference 
fringes

G1 G2filter

extended, broadband 
light source

Proc. of SPIE Vol. 11207  1120702-3



At this point, it is worthwhile to mention early work on the properties of coherent and partially coherent fields, see, for 
example 16. Knowledge of the partially coherent case, i.e. the Lau effect, can be useful for understanding the design of 
modern lithographic systems. The ever-decreasing size of features in VLSI-chips is partly due to a sophisticated 
combined optimization of light source and lithographic mask (“mask-source optimization”) 17. Both, light source and 
mask, exhibit lateral periodicity and may be described mathematically as the 2D case of a Lau interferometer. 

2.5. Rotational symmetry  

Optical elements with rotational symmetry include well-known examples such as lenses and spherical mirrors, described 
by a quadratic phase function. In recent years, element with linear radial phase, so-called axicons have received much 
interest  18. An axicon can be used to generate an elongated focus, a so-called Bessel beam 19. An axicon with additional 
azimuthal phase generates a higher-order Bessel beam with orbital angular momentum 20 (“optical vortex”). By 
additional discretization of the phase function (possible by using a diffractive implementation), additional complexity 
can be introduced in the wavefield to generate, e.g., multiple vortices 21,22. 

Figure 5. Diffractive axicon and spiral axicon. 

2.6. Combination of translational and rotational symmetry  

Different types of symmetries may be combined to yield wavefields with rather unusual properties. One particular 
example is shown in Fig. 6, which displays a periodic array of diffractive axicons. In this case of lateral and rotational 
symmetry combined, Talbot self-imaging is observed, however, the contributions of the vortices in each period add up to 
yield a spatial variation of the spectral phase  23. 

Figure 6. Periodic arrays of diffractive spiral axicons. Here, p denotes the lateral period in each of the two patterns. 
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2.7. Combination of lateral and longitudinal periodicity  

The cases of lateral and longitudinal periodicity may be combined to consider the question, how the resulting wavefield 
looks like. This case is implemented by considering a Fabry-Pérot resonator with two periodically structured mirrors 24. 
The analysis shows that stop-bands occur in the spatial frequency spectrum of the transmitted field, similar to the stop-
bands occuring for photonic crystals, yet here, for structures larger than the wavelength. 

Figure 7. Combination of lateral and longitudinal periodicity: structured resonator and resulting spatial frequencies. 

3. ADDITIONAL CONSIDERATIONS AND CONCLUSION 
3.1. Wigner representation of optical wavefields 

The considerations on optical wavefields and their properties get an additional touch when mapping the signal function 
into “phase space” by a “Wigner transformation”, which combines spatial and spatial frequency coordinates. A 
comprehensive overview is given in ref. 25. One particular strength of phase-space optics is that it provides information 
about the local frequency content of a signal. In connection with symmetry operations as discussed here, the Wigner or 
phase-space formalism may be helpful to reveal certain properties more easily. 

3.2. Symmetries in data structures 

As mentioned in the introduction, symmetries can be found everywhere in physics, chemistry, biology and mathematics. 
However, they are of high relevance in computer science, too, and from there, have been of interest for the work on 
optical computing in the 1980s and 90s.  

A specific example is given by the permutation networks which are underlying the so-called fast algorithms in 
computing. Fast algorithms like the FFT algorithm by Cooley and Tukey, for example, are based on symmetry properties 
of the discrete transformation kernel !  using a binary decomposition of the positions !  (input) and !  
(output), e.g., !  for !  and the recursion formula ! . This allows one to carry out 
the calculation of a discrete Fourier transformation recursively using a -architecture 26.  

The computation of the FFT is usually implemented on a so-called Butterfly network (also known as the Banyan 
network, see Fig. 8a), whose interconnection pattern reflects the symmetry properties just mentioned. The Butterfly 
network belongs to a wider class of permutation networks which are widely used for computation, sorting and routing 
applications 27. Butterfly (Banyan), Perfect Shuffle and Crossover network are well-known examples for permutation 
networks. All of them have been investigated in the context of using optics, in particular, the parallelism of optics in 
computing and switching 28. The optical implementation of permutation networks implies certain challenges, mainly 
because of their space-variant character. Symmetry, however, can be used for an efficient implementation, e.g., by 
decomposition into “essentially” space-variant sub-operations, as shown, for example for the inverse Perfect Shuffle 
(Fig. 8b) in ref. 29.  
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Figure 8. a) Butterfly (or Banyan) network. b) Inverse Perfect Shuffle. 

3.3. What symmetry considerations are good for  

The examples presented above indicate the wide variety of situations where symmetries can play a role. From the 
presentation, it is also obvious, that in some cases, very practical aspects are in the foreground (e.g., with regards to the 
design of an optical system), while in other cases, more fundamental aspects of light propagation become relevant (e.g., 
with regards to self-imaging properties). Symmetry considerations may be helpful to predict which effects occur or 
which cannot occur. They cannot yield definite predictions nor provide a quantitative description.  

Symmetries have a high aesthetic value, either for an observer looking at a symmetric pattern or field distribution. Often, 
the interesting phenomenon occurs for situations with well-defined asymmetries, as it was mentioned already in the 
introduction. The combination of translational and rotational symmetries described above may serve as an example here. 
Or, as Pierre Curie, said in 1894: “C’est la dissymétrie qui crée le phénomène” 30,31. 
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