
Simulating Arbitrary Dose Levels and Independent Noise Image Pairs 

from a Single CT Scan 
 

Sen Wanga, Adam S. Wanga,b 
aDepartment of Radiology, Stanford University, Stanford, CA USA 94305 

bDepartment of Electrical Engineering, Stanford University, Stanford, CA USA 94305 

ABSTRACT 

Deep learning-based image denoising and reconstruction methods have shown promising results for low-dose CT. When 

high-quality reference images are not available for training the network, researchers found a powerful and effective 

counterpart called Noise2Noise, which trains the neural network using paired data with independent noise. However, it is 

uncommon to have paired CT scans with independent noise (e.g., from two scans). In this paper, a method is proposed to 

generate such paired data for potential usage in deep learning training by simultaneously simulating a low-dose image at 

arbitrary dose level and an image with independent noise from a single CT scan. Their independence is investigated both 

analytically and numerically. In our numerical study, a Shepp-Logan phantom was utilized in MATLAB to generate the 

ground-truth, normal-dose, and low-dose images for reference. Noise images were obtained for analysis by subtracting the 

ground-truth from the noisy images, including the normal-dose/low-dose images and the paired products of our proposed 

method. Our numerical study matches the analytical results very well, showing that the paired images are not correlated. 

Under an additional assumption that they form a bivariate normal distribution, they are also independent. The proposed 

method can produce a series of paired images at arbitrary dose level given one CT scan, which provides a powerful new 

method to enrich the diversity of low-dose data for deep learning. 
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1. INTRODUCTION 

Low-dose computed tomography (CT) is one of the most direct and effective ways to reduce the radiation dose to 

patients. However, a trade-off between image quality and patient dose always exists. Many efforts have been put into this 

area to find better ways of balancing the trade-off. Deep learning methods are one of the most recent and promising 

developments in reducing noise in CT imaging. When high-quality images are accessible for training, neural networks 

trained either in image domain1,2 or during the reconstruction process3,4 showed promising performance. 

On the other hand, there are several works attempting to tackle the problem without the presence of high-quality 

images by exploiting the Noise2Noise pipeline5. Wu et al6 showed that a denoising network with Noise2Noise training is 

equivalent to training with clean labels (high-quality images) when a few conditions are satisfied. One of the four 

conditions is that the network should have paired noisy data with zero-mean, independent noise. For Noise2Noise 

application in CT imaging, it is crucial to find such paired data. While such data could be acquired with two scans of the 

same patient, this exposes the patient to additional dose and will have misregistration artifacts. Pairing simulated low-dose 

images with the original normal-dose images does not satisfy this condition since some of the noise in the simulated low-

dose image comes from the normal-dose image, so the two images do not have independent noise. In one Noise2Noise 

approach, Wu et al7 constructed the independent image pairs via random projection splitting. Yuan et al8 proposed a 

Noise2Noise based denoising method named ‘Half2Half’. In their training pair construction, binomial selection was 

applied to the projection data, splitting it into two pseudo half-dose scans.  

For the aforementioned methods, the dose allocation is fixed, and both of them split dose evenly to the paired images. 

In this paper, we propose a method to simulate arbitrary dose levels and independent noise from an existing CT scan. 

Paired images can be generated at any desired dose reduction level from a single CT scan, which provides more diversity 

in training data given the same normal-dose CT scans. 
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2. METHODS 

For simplicity, the normal-dose projection domain measurements (raw data) 𝑃𝑁𝐷 can be modeled as the sum of a 

Poisson and Gaussian random variable8:   

 𝑃𝑁𝐷 ~ Poisson(𝜆) + Gaussian(0, 𝜎𝑒
2), (1) 

where 𝜆 is the mean counts and 𝜎𝑒 is the standard deviation of electronic noise. If we denote the photon counts from the 

source as 𝐼0 and the object pathlength as 𝑙, the mean counts can be formulated as 

 𝜆 = 𝐼0 exp(−𝑙). (2) 

Hence, the expectation and variance of 𝑃𝑁𝐷 can be given by equations (3) and (4): 

 𝐸[𝑃𝑁𝐷] = 𝜆, (3) 

 Var(𝑃𝑁𝐷) = 𝜆 + 𝜎𝑒
2. (4) 

For a specified dose level 𝑑 (0 < 𝑑 < 1), according to equation (1) the measured counts 𝑃𝐿𝐷
(𝑑)

 ~ Poisson(𝑑𝜆) +

Gaussian(0, 𝜎𝑒
2). Similarly, the expectation and variance of 𝑃𝐿𝐷

(𝑑)
 are 𝐸[𝑃𝐿𝐷

(𝑑)
] = 𝑑𝜆 and Var(𝑃𝐿𝐷

(𝑑)
) = 𝑑𝜆 + 𝜎𝑒

2, 

respectively.  

For the low-dose simulation process, we want to emulate the behavior of 𝑃𝐿𝐷
(𝑑)

 at dose level d from normal-dose scan 

𝑃𝑁𝐷. For conventional low-dose simulation, this is a well-known process to insert noise in the projection data. Detailed 

steps are listed in Table 1. 

Table 1. Conventional noise insertion 

Step Operation 

1 Generate 𝑄 ~ Gaussian(0, 𝜆) and E ~ Gaussian(0, 𝜎𝑒
2).    

2 
Let 𝑃𝑠𝐿𝐷

(𝑑)
= 𝑑(𝑃𝑁𝐷 + 𝑎(𝑄 + 𝑏𝐸)), where 𝑎 = √

1

𝑑
− 1, 𝑏 = √

1

𝑑
+ 1. Then 𝐸[𝑃𝑠𝐿𝐷

(𝑑)
] = 𝑑𝜆, Var(𝑃𝑠𝐿𝐷

(𝑑)
) 

= 𝑑2((𝜆 + 𝜎𝑒
2) + 𝑎2(𝜆 + 𝑏2𝜎𝑒

2))= 𝑑𝜆 + 𝜎𝑒
2. 

3 𝑃𝐿𝐷
(𝑑)

 and 𝑃𝑠𝐿𝐷
(𝑑)

 are independent and identically distributed random variables. 

 

The conventional noise insertion adds additional quantum noise 𝑄 and electronic noise 𝐸, which are scaled by a factor 

depending on the dose level. In practice, when generating 𝑄, we use 𝑃𝑁𝐷 as a surrogate for variance 𝜆 since the true 𝜆 is 

unknown from a single realization. The result is defined as: 

 𝑃𝑠𝐿𝐷
(𝑑)

= 𝑑(𝑃𝑁𝐷 + 𝑎(𝑄 + 𝑏𝐸)), (5) 

which can be viewed as a synthetic projection acquired at dose level d as it shares the identical probability distribution 

(noise properties) as 𝑃𝐿𝐷
(𝑑)

. While this enables a simulated low-dose image, we still need a paired zero-mean, independent 

noise realization for Noise2Noise training. To this end, we define 𝑃𝐼𝑁
(𝑑)

 as: 

 𝑃𝐼𝑁
(𝑑)

= 𝑑 (𝑃𝑁𝐷 −
1

𝑎
(𝑄 +

1

𝑏
𝐸)). (6) 

As is shown in the Appendix, we prove that 

 𝐸[𝑃𝑠𝐿𝐷
(𝑑)

𝑃𝐼𝑁
(𝑑)

] = 𝑑2𝜆2 = 𝐸[𝑃𝑠𝐿𝐷
(𝑑)

]𝐸[𝑃𝐼𝑁
(𝑑)

]. (7) 

which means that they are uncorrelated. On the assumption that (𝑃𝑠𝐿𝐷
(𝑑)

, 𝑃𝐼𝑁
(𝑑)

) form a bivariate normal distribution, they are 

independent if they are uncorrelated. This is a reasonable assumption for any modest number of photon counts, where the 

Poisson distribution is approximately Gaussian, and the other noise (electronic, added noise 𝑄, 𝐸) are all Gaussian. 
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Importantly, both 𝑃𝑠𝐿𝐷
(𝑑)

 and 𝑃𝐼𝑁
(𝑑)

 use the same noise realizations of 𝑄 and 𝐸, but they are scaled inversely and subtracted in 

𝑃𝐼𝑁
(𝑑)

 as compared to 𝑃𝑠𝐿𝐷
(𝑑)

, which leads to the uncorrelated property. 

We thus have 𝑃𝐼𝑁
(𝑑)

, which has zero-mean, independent noise of 𝑃𝑠𝐿𝐷
(𝑑)

. In the Noise2Noise conditions, independent 

noisy image pairs are required. The proposed method can generate such paired data (𝑃𝑠𝐿𝐷
(𝑑)

, 𝑃𝐼𝑁
(𝑑)

), where 𝑃𝑠𝐿𝐷
(𝑑)

 simulates data 

acquired at arbitrary dose level d. Note that 𝑃𝐼𝑁
(𝑑)

 does not correspond to any specific dose level, but rather is designed to 

satisfy the Noise2Noise conditions. This enables a diversity of dose levels, which may be beneficial to training CT 

denoising networks. 

3. NUMERICAL SIMULATION 

To validate the proposed method, numerical simulation was carried out in MATLAB with the built-in Shepp-Logan 

phantom and Radon projection method for a monoenergetic source. 

 

Fig.  1. Reconstructed image and noise image of Shepp-Logan phantom. (a) ideal image, noiseless ground-truth. (b) 

reconstructed image using normal dose, flux of source 𝐼0= 5e4 photons, 𝜎𝑒= 5 counts. (c) noise image, subtracting (a) from 

(b). The display window for (a) and (b) is [0, 0.4] cm-1. The display window for (c) is [-0.02, 0.02] cm-1. 

In the simulation, the x-ray source flux was set to 5e4 photons per ray and 𝜎𝑒= 5 counts, which is referred to as normal 

dose for the remainder of the paper.  

The projections were reconstructed with filtered backprojection (FBP), and the images are illustrated in Fig. 1. We 

include the ideal image with noiseless projections [using equation (2)] in Fig. 1(a), which is the ground-truth image. Fig. 

1(b) is the reconstructed image under normal dose [using equation (1)]. By subtracting Fig. 1(a) from Fig. 1(b), we obtain 

the noise image as shown in Fig. 1(c).  

 

Fig.  2. Noise insertion results. (a), (b) and (c) are reconstructed and noise images for normal dose, real low-dose, and 

synthetic low-dose, respectively. Noise images are determined by subtracting the ground-truth image in Fig. 1(a). The 

display window for the first row (a-c) is [0, 0.4] cm-1 and is [-0.02, 0.02] cm-1 for the second row (d-f).  

 

From the normal dose projections, it is possible to synthesize projections at a specific dose level following the 

conventional noise insertion steps in Table 1. We can also simulate a real low-dose scan acquired at the same dose level. 

Fig. 2 displays the results of both reconstructed and noise images for normal dose, real low-dose (𝑅𝐿𝐷
(0.3)

, the reconstructed 

(a) Ideal (b) Normal 
dose

(c) Noise image

(a) Normal 
dose

(b) Real 
low-dose 

( )

(c) Synthetic 
low-dose

( )

(d) (e)

STD = 0.0165 cm-1STD = 0.0167 cm-1STD = 0.0090 cm-1

(f)
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image from 𝑃𝐿𝐷
(0.3)

 ), and synthetic low-dose (𝑅𝑠𝐿𝐷
(0.3)

, the reconstructed image from 𝑃𝑠𝐿𝐷
(0.3)

), respectively, for dose level 𝑑=0.3, 

or 30% of the normal dose. Standard deviations of the phantom region are labeled on the noise images, where we find 

good correspondence between the synthetic low-dose image and the real low-dose image, as well as the increased noise in 

the low-dose images compared with the normal dose. 

 

Fig.  3. Independent noise images at 30% dose level. Image 𝑅𝑠𝐿𝐷
(0.3)

 is at simulated low dose 𝑑=0.3, and 𝑅𝐼𝑁
(0.3)

 has noise that is 

independent of 𝑅𝑠𝐿𝐷
(0.3)

 (𝜌
𝑅𝑠𝐿𝐷

(0.3)
,𝑅𝐼𝑁

(0.3) = −0.0015), although it has a different noise magnitude. The display window is [0, 0.4] 

cm-1 for the first row and [-0.02, 0.02] cm-1 for the second row. 

 

Equations (5) and (6) guide us in the generation of independent noise images from normal dose images. Fig. 3 shows 

a realization of the (𝑅𝑠𝐿𝐷
(0.3)

, 𝑅𝐼𝑁
(0.3)

) pair at 30% dose level. Correlation 𝜌
𝑅𝑠𝐿𝐷

(0.3)
,𝑅𝐼𝑁

(0.3) between the noise images of 𝑅𝑠𝐿𝐷
(0.3)

 and 

𝑅𝐼𝑁
(0.3)

 was calculated across all pixels in the phantom and across 10 realizations and was found to be near zero, which 

supports the independence we desire. As expected when 𝑑 < 0.5, the noise magnitude in 𝑅𝐼𝑁
(𝑑)

 is lower than that in 𝑅𝑠𝐿𝐷
(𝑑)

 

since more noise is added into 𝑅𝑠𝐿𝐷
(𝑑)

 than is added to 𝑅𝐼𝑁
(𝑑)

 according to the inverse scaling of the added quantum and 

electronic noise. 

For other dose levels, the processing can be easily repeated, which forms the curves in Fig. 4. The horizontal axis 

denotes the relative dose levels from 5% to 95% of normal dose. The vertical axis is the noise in image domain. The blue 

squares are the real low-dose images 𝑅𝐿𝐷
(𝑑)

 at corresponding dose levels. The red dots are noise levels of synthetic low-dose 

images 𝑅𝑠𝐿𝐷
(𝑑)

 from the normal dose image 𝑅𝑁𝐷. Again, they fit the blue squares very well at all dose levels. The orange 

dots are noise levels of images 𝑅𝐼𝑁
(𝑑)

 with independent noise from the synthetic low-dose images 𝑅𝑠𝐿𝐷
(𝑑)

. At lower dose, the 

independent 𝑅𝐼𝑁
(𝑑)

 image tends to have lower noise level, showing different noise behaviors to real or synthetic low-dose 

images. 

(a) (b) 

(c) 

STD = 0.0165 cm-1 STD = 0.0107 cm-1

(d) 
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Fig.  4. Noise at different dose levels. The average correlation between images 𝑅𝑠𝐿𝐷
(𝑑)

 and 𝑅𝐼𝑁
(𝑑)

 across all dose levels is 

𝜌
𝑅𝑠𝐿𝐷

(𝑑)
,𝑅𝐼𝑁

(𝑑) = 0.001. 

In general, the independent noise image 𝑅𝐼𝑁
(𝑑)

 does not correspond to a specific dose level, even though the noise levels 

appear approximately symmetric to that of the low-dose images about 𝑑 = 0.5. For example, the noise level in 𝑅𝐼𝑁
(𝑑)

 at 

80% dose level is generally not equal to that in 𝑅𝑠𝐿𝐷
(𝑑)

 at 20%. However, for the special case of no electronic noise (𝜎𝑒 = 0), 

it can be shown that this is the case, and the 𝑅𝐼𝑁
(𝑑)

 image represents a dose level of 1 − 𝑑. 

 
Fig.  5. Noise level difference between 𝑅𝑠𝐿𝐷

(0.5)
 and 𝑅𝐼𝑁

(0.5)
 at 50% dose level 

 

We demonstrate this assertion with a simple test. For the 50% dose level, we plot the difference in noise between the 

𝑅𝑠𝐿𝐷
(0.5)

 and 𝑅𝐼𝑁
(0.5)

 images (Fig. 5). When there is no electronic noise (𝜎𝑒 = 0), the noise levels are indeed identical, but for 

𝜎𝑒 > 0, more electronic noise is added to the synthetic 50% dose image 𝑅𝑠𝐿𝐷
(0.5)

 than the independent noise image 𝑅𝐼𝑁
(0.5)

. 

Therefore, in general we are not splitting dose or creating another low-dose image. Instead, we have created an additional 

image with independent noise, which satisfies the Noise2Noise conditions. 

In Fig. 6, the correlations between (𝑅𝑠𝐿𝐷
(𝑑)

 , 𝑅𝐼𝑁
(𝑑)

) and (𝑅𝑠𝐿𝐷
(𝑑)

 , 𝑅𝑁𝐷) are plotted in blue and red. As expected, the 

correlations between (𝑅𝑠𝐿𝐷
(𝑑)

 , 𝑅𝐼𝑁
(𝑑)

) at different dose levels are close to 0. On the contrary, the correlations between (𝑅𝑠𝐿𝐷
(𝑑)

, 

𝑅𝑁𝐷) increases with higher dose (red curve) since more of the noise in the synthetic low-dose image comes from the 

original normal-dose image. At lower dose, the increased amount of inserted noise leads to lower correlations with the 

original image. 

Electronic noise 
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Fig.  6. Correlation at different relative dose levels 

 

We also list the correlation coefficients under different electronic noise (𝜎𝑒) levels in Table 2. The correlation between 

synthetic image 𝑅𝑠𝐿𝐷
(𝑑)

 and independent noise image 𝑅𝐼𝑁
(𝑑)

 is generally near zero, which agrees with the theoretical analysis 

in equation (7). 

 

Table 2. Correlation coefficients 

𝝈𝒆 

𝝆
𝑹𝒔𝑳𝑫

(𝒅)
,𝑹𝑰𝑵

(𝒅)  

Mean STD 

0 0.0003 0.0023 

5 0.0011 0.0022 

10 0.0014 0.0023 

20 0.0008 0.0028 

 

 

4. DISCUSSION AND CONCLUSIONS 

In this paper, a simulation tool was demonstrated for simultaneously synthesizing low-dose images at arbitrary dose 

level and independent noisy images. The method extends the conventional noise insertion procedure and creates a 

byproduct image with independent noise along with the low-dose image at a specific dose level. Correlation between the 

synthetic and independent noise images was investigated both analytically and numerically, which verified that they are 

uncorrelated. Thus, they are independent under the assumption that they form a bivariate normal distribution. 

For now, we only carried out preliminary validation with a simple simulation in MATLAB. Future work will extend 

these concepts to a more accurate forward projection model with polychromatic spectrum and non-ideal detector response 

(energy integrating or photon counting). Also, we are using a linear FBP reconstruction algorithm so that projection domain 

analysis can be transferred directly to the image domain (although this does include a non-linear log step). Iterative 

reconstruction methods may violate our linearity assumptions in the image domain, even if the projection domain noise 

properties hold. Another challenge might be the accuracy of our noise models in severely attenuated areas with photon 

starvation, such as behind metal. Lastly, we plan to demonstrate the utility of our independent noise simulation on CT 

denoising networks by fully leveraging the Noise2Noise principle. Our belief is that training with a wide range of simulated 

dose levels paired with independent noise will outperform other training methods like Half2Half or pairing simulated low 

dose images with normal dose images. 
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APPENDIX 

In this section, we prove that (𝑃𝑠𝐿𝐷
(𝑑)

 , 𝑃𝐼𝑁
(𝑑)

) are uncorrelated (𝐸[𝑃𝑠𝐿𝐷
(𝑑)

𝑃𝐼𝑁
(𝑑)

] = 𝐸[𝑃𝑠𝐿𝐷
(𝑑)

]𝐸[𝑃𝐼𝑁
(𝑑)

]). Given the definitions of 

𝑃𝑠𝐿𝐷
(𝑑)

 and 𝑃𝐼𝑁
(𝑑)

, it is straightforward to show 

 𝐸[𝑃𝑠𝐿𝐷
(𝑑)

]𝐸[𝑃𝐼𝑁
(𝑑)

] = (𝑑𝜆)(𝑑𝜆) = 𝑑2𝜆2. (8) 

On the other side:  

( ) ( ) ( )

( )

( )

( )  ( )
( )

( ) ( )

2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2

1 1
[

1
]

Var

d d

sLD IN ND ND ND

ND

ND ND

e e

d d

sLD IN

E P P d E P P a Q bE P Q E
a b

Q bE Q E
b

d E P E Q E E

d P E P E Q E E

d

d E P E P

    



   = +  + −  +    

 
− + + 

 

     = − −     

   = + − −   

= + + − −

   = =
   

 (9) 

where the independence of added noise 𝑄 and 𝐸 from the measured data 𝑃𝑁𝐷 gives us 𝐸[𝑃𝑁𝐷𝑄] = 0, 𝐸[𝑃𝑁𝐷𝐸] = 0. 
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