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ABSTRACT   

Photon-counting detector based spectral computed tomography (CT) has great potential in material decomposition, tissue 

characterization, lesion detection, and other applications. For a fixed total photon number or radiation dose, the increase 

of channel number will lead to the decrease of the photon number in each channel, resulting in degraded image quality of 

the reconstructed image. This is difficult to meet the practical applications for material decomposition, tissue 

characterization, lesion detection, etc. To improve the quality of image reconstruction, we propose a spectral CT 

reconstruction algorithm based on joint multi-channel total generalized variation (TGV) minimization and tensor 

decomposition. On one hand, the algorithm takes joint multi-channel TGV function as regularization. The total 

generalized variation is extended to the vector, and the sparsity of singular value is used to promote the linear 

dependence of the image gradient. On the other hand, the multi-channel images share the same physical structure, and 

the algorithm employs the non-local feature similarity in the image domain. Similar image blocks are clustered into a 

four-order tensor group, and the noise was reduced by sparse representation of high-dimensional tensors. Experiment 

results show the proposed algorithm can further improve the quality of reconstructed image and preserve the edge and 

details of the spectral CT image.   
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1. INTRODUCTION  

Photon-counting detector (PCD) based spectral CT has attracted an increasing attention [1]. However, a single energy 

bin contains only a fraction of the total photon, and most PCDs can only accommodate a limited count rate. The multiple 

projection datasets obtained by PCD usually contain very strong Poisson noise [2]. This makes it difficult to meet the 

challenges of practical applications.  

Inspired by the image domain non-local feature similarity, Zhang et al. extended the traditional vectorized dictionary 

learning to tensor dictionary learning (TDL) for spectral CT reconstruction. The TDL based reconstruction algorithms 

for spectral CT have some limitations [3]. When the noise is too large, it is impossible to distinguish the noise from the 

organizational structures, and block artifacts appear in the reconstructed images. Recently, tensor decomposition 

methods are widely used in image denoising. A high dimensional tensor can be represented approximately by the 

weighted sum of a series of low-rank tensor data, leading to effective noise suppression and artifact reduction. 

The correlation of reconstructed image in each spectral channel has attracted more and more attention. Rigie and Patrick 

developed a spectral CT reconstruction method based on vector total variation (VTV) [4], which combines the nuclear 

norm to promote the sparsity of the multi-channel gradient vector field. Knoll et al. used the second-order total 

generalized variation as a special multi-channel regularization function (MTGV), and the structural information was 

shared in the process of reconstruction while the unique differences were retained [5]. 

In order to make better use of sparsity in the image domain and the correlation of the reconstructed image for multi 

spectral channels, we propose a spectral CT reconstruction algorithm based on joint multi-channel total generalized 

variation and tensor decomposition, and we call it MTGV-TD. 
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2. MODELS AND METHOD 

2.1 Joint multi-channel TGV regularization based on nuclear norm 

In 2014, Rigie and Patrick extended the single-channel gradient vector to the vector field and defined the discrete 

Jacobian matrix in the following form: 
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where T
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When two images have the same curve, the two images have the same direction gradient and the converse is also true [6]. 

If all the gradient vectors of each channel image are parallel or antiparallel, then the rank of the Jacobian matrix will be 1. 

Hence, there will be only one non-zero singular value. Based on those facts, if the image gradients of each channel are 

parallel, the nuclear norm will be minimized. Our algorithm will extend the total generalized variation to the vector: 
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where
x

 ， y

 represents the first order backward difference between horizontal and vertical directions， ij Uw .   

2.2 Tensor Decomposition 

Tensor decomposition has been widely used in image reconstruction and image processing, etc. Usually, there are two 

main tensor decomposition methods: the Tucker decomposition and the Candecomp/Parafac (CP) decomposition. Here, 

we only address the CP decomposition. 

CP decomposition can decompose a N
th

 tensor χ into the weighted sum of rank-one tensors, which can be expressed as 
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where h is the weight function， 1 , (n 1,2, , N)n

nha R  is a normalized vector and the symbol “  ” represents the 

outer product. The sparsity level of representation can be controlled by adjusting the parameter H. We can apply tensor 

decomposition for image restoration. The mathematical model can then be expressed as: 

 
2
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where 0χ and χ are the corrupted and restored images, respectively. χ can be obtained using the ALS method by solving 

each nA  alternatively [7]. 

2.3 Mathematical Model for MTGV-TD 

In this algorithm, tensor decomposition is used to improve the image blocks quality, and joint multi-channel TGV 

function is sharing information between channels. Combining multi-channel TGV function and tensor decomposition a 

spectral CT reconstruction algorithm is proposed. Its objective function can be expressed as the following convex 

minimization problem: 
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reconstructed image in i
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 energy channel, ig
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represents the projection data in i

th
 energy channel, C and 

cZ denote the group number and group extraction operator.  

2.4 Solution 

Refer to (7), there are two variables that need to optimization. We divides it into the following two sub-problems and 

then adopts the method of alternating optimization to solve them: 
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By introducing variables, equation (7a) is transformed into a constrained problem, which can be summarized as: 
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Equation (8) can be converted into another unconstrained optimization function: 
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Equation (9) contains two variables, which are optimized by using the method of alternating iteration. Equation (9) is 

divided into two sub-problems: 
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Gradient descent method is adopted to solve equation (10), then: 
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A first-order Primal-Dual algorithm is used to approximate the global optimal solution of equation (11) [8]. Because 

each group is independent regarding the optimization process, equation (7b) can be rewritten into 
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Equation (13) is solved by using ALS method [7]. 

3. EXPERIMENTAL RESULTS 

The major goal of this paper is to evaluate the performance of the MTGV-TD for spectral CT. The algorithms of SART, 

TV, TDL and multi-channel TGV(MTGV) are implemented for comparison [9,10] . All the algorithms are implemented 

in a hybrid mode of Matlab and C++. While the interface is implemented in Matlab, all the extensive computational parts 

are implemented in C++ and complied via MEX function. 

Figure 1. Spectrum used for numerical simulation 

 
A numerical mouse thorax phantom generated by the MOBY software is used for simulation experiments and 1.2% (by 

volume) iodine contrast agent is introduced into the blood circulation. The model size is 20 × 20 mm
2
, and the resolution 

is 512 × 512. The scanning radius is 100 mm, and the length of virtual detector located at the center of the object is 20 

mm. There are 320 detector units in total, each of which is 0.0625mm. The voltage is 50kVp and energy spectrum is 

divided into five energy channels: WE1 = {11keV-26keV}, WE2 = {27keV-30keV}, WE3 = {31keV-34keV}, WE4= 

{35keV-39keV} and WE5 = {40keV-50keV}, as shown in figure 1. In the simulation experiments, an isometric fan-

beam scanning is adopted. For each X-ray path, 50000 photons are assumed emitted from the X-ray source. The 

projection data with Poisson noises are generated with expectations being the number of photons received in the 

corresponding noise-free case. The parameters used in this algorithm are =50 , =0.8 , =0.2  , C=120 . 

In this experiment, table 1 shows the comparison results of PSNR, NRMSE and SSIM values between reconstructed 

images and comparison images in representative channels with full scan 360 projections. It can be seen from table 1 that 

the reconstruction accuracy of MTGV-TD is superior to the comparison algorithms for all the channels. Figure 2 gives 

the corresponding reconstructed images of channels 1, 3 and 5.  

From figure 2, one can see that SART algorithm has strong noise in image reconstruction. Image blurring and detail 

missing appear in TV algorithm, and it is difficult to distinguish noise from details. The overall denoising ability of TDL 

is weaker than that of MTGV. The reconstructed image of the MTGV algorithm shows that it can guarantee clearer 

edges while denoising. The proposed MTGV-TD algorithm in this paper reconstructs the image with clear edges and 
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obvious details, and it achieves better noise reduction effect and detail preservation ability. figure 3 shows the 

comparison results of PSNR, NRMSE and SSIM values between reconstructed images and comparison images with 360, 

180, 120, and 90 uniformly sampled full scan projections. It can be seen that the reconstruction effect will become better 

with the increase of projection number.  

 
Table.1 Quantitative evaluation results of different algorithms 

 
WE1 WE3 WE5 

PSNR MSE SSIM PSNR MSE SSIM PSNR MSE SSIM 

SART 37.8556 0.0038 0.9877 32.2237 0.0029 0.9910 28.7681 0.0026 0.9924 

TV 40.5474 0.0028 0.9954 36.1795 0.0019 0.9968 33.5872 0.0015 0.9974 

TDL 41.7601 0.0024 0.9951 40.6116 0.0011 0.9986 38.3339 0.0008 0.9990 

MTGV 41.6307 0.0024 0.9961 38.4977 0.0014 0.9980 36.3173 0.0011 0.9985 

MTGV-TD 42.4184 0.0022 0.9965 40.9714 0.0011 0.9988 39.4804 0.0007 0.9992 

 

 

 

 
                                (a)SART                      (b)TV                  (c)TDL                (d)MTGV          (e)MTGV_TD 

Figure 2 The reconstruction results of the mouse model form 360 projections. From left to right, the rows are SART, TV, 

TDL, MTGV and MTGV_TD. From top to bottom, the columns are 1st, 3rd and 5th energy channel. 

 

 
(a)NRMSE                                                     (b)PSNR                                                      (c) SSIM 

 

Figure 3 Convergence curves of (a)NRMSE, (b)PSNR and (c) SSIM as a function of iterations under different angle 

4. CONCLUSION 

In this paper, we propose a spectral CT reconstruction algorithm based on tensor decomposition and joint multi-channel 
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total generalized variation. The algorithm improves the reconstructed image quality by using the image domain sparse 

condition and the information correlation among channels. The experiment results show this method can not only 

effectively suppress the noise, but also protect the edge and detail features of the images. 
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