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ABSTRACT 
 

Image Science provides a framework for the task-based assessment of image quality. This framework has been used to 
support the evaluation of medical imaging system hardware, iterative reconstruction algorithms and other image 
processing methods, and display devices by academia, industry, and US FDA. Since the earliest instances of the SPIE 
Medical Imaging Symposium the conference has served as an essential venue for presentations and discussions related to 
the objective assessment of image quality, featuring first disclosures of new models for physiological backgrounds and 
pathologies, tools for simulating medical imaging systems, models for the human and Bayesian observer, and methods 
for computing task-based figures of merit. This paper highlights recent advances in the objective or task-based 
assessment of image quality through the use of computational models and methods, and points to new initiatives 
intended to develop resources to move this important field forward.  
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1. INTRODUCTION 
 

The objective assessment of image quality is essential for determining how well an imaging system supports making 
decisions or drawing inferences from the resulting images. A better imaging system is one that allows for better 
inferences regarding the object on average. Comparisons of example images can be indicative, but not sufficient. Task-
based assessment is a statistical methodology. 
 
The defining elements of task-based assessment of image quality were laid out comprehensively by Barrett and Myers.1 

These elements include defining the task in terms of the inferences one wishes to make about the object, and the 
associated figure of merit. One must specify the particular set of objects (patients in a medical imaging context), imaging 
systems, observers – whatever entity ingests image data and renders inferences – and statistical tools that allow for 
meaningful comparisons across imaging system evaluations. Much progress is being made in the development of tools 
and resources that facilitate the application of task-based assessment methodologies for more realistic imaging tasks. 
Especially true in this regard is the harnessing of modern computational power through in silico modeling of all elements 
of the imaging chain, bringing us ever closer to the possibility of realizing rigorous, predictive task-based assessment 
studies of medical imaging systems without humans in the loop either as patients in a clinical study or as image readers. 
Section 2 provides some examples of recent advances in the essential components for task-based assessment of medical 
imaging systems. These examples are intended to give an indication of the many recent, excellent contributions to these 
efforts and are in no way a comprehensive review of the field. This reality is the happy result of the fact that there are so 
many oustanding groups and contributors to this growing field. Section 3 describes efforts that pull these components 
together.  Concluding remarks are offered in Section 4. 
 

2. RECENT ADVANCES IN TASK-BASED ASSESSMENT 
 

2.1 Models for patients 
 
Early studies of task-based image quality in medical imaging made use of highly stylized object models, typically in 
which signals were exactly known and backgrounds were uniform. These studies included theoretical investigations2 and 
those making use of simplistic digital3 or physical4 imaging phantoms with ideal, human observers, or both.5 It soon 
became clear that more complex models for the object were needed to avoid conclusions regarding system quality that 
did not generalize well to more complex imaging scenarios. As a result, investigators turned to statistical models for 
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backgrounds and signals that were defined statistically.6-8 As highlighted next, we’ve come a very long way since those 
early efforts to develop models for signals and backgrounds with greater complexity. 
 
Procedural, analytical, or parameterized models are one major area of significant technical advances in recent years. For 
example, the digital breast model of Graff et al.9 makes use of a set of procedures to generate the major anatomical 
structures of the female breast, including fat and glandular tissues, the ductal tree, vasculature, and ligaments. The model 
allows for patient characteristics such as breast shape, volume, density, and compressed thickness to be controlled. 
Source code for the model is freely available.10 Models for masses11 and microcalcifications12 based on procedure 
models allow for the insertion of pathologies in such digital breast objects, resulting in a family of digital breasts with 
simulated lesions of varying size and shape, and with even the possibility of modeling tumor growth over time.13 

 

Hybrid models combine clinical backgrounds with edited clinical lesions to create larger datasets. These models 
typically leverage the much larger numbers of normal images at hand, and create a new, larger set of abnormal images 
by inserting lesions that were digitally harvested from abnormal images. These models have been demonstrated in the 
domain of the raw/detected data14-16 as well as in the domain of reconstructed images.17 Because such procedures make 
use of real clinical backgrounds and pathologies, they have the advantage of clinical realism, so long as the lesion 
insertion process does not result in noticeable artifacts. However, as these methods start with image domain data, they 
are less amenable to evaluations of imaging system hardware. They are more likely to be useful in the evaluation of 
competing reconstruction methods, image processing tools, display devices, and data augmentation for training of 
artificial intelligence and deep learning (AI/DL) algorithms. 
 
Atlas models derive families of patients through the segmentation of clinical image sets. The XCAT Phantom Program 
developed by investigators of the Duke University’s Center for Virtual Imaging Trials is a prominent example of this 
approach.18 Because these phantoms are derived from clinical images, they are necessarily limited by the imaging 
hardware used to acquire the underlying images. Research investigators are working to develop approaches for inserting 
sub-resolution structures and textures from other imaging modalities or via modeling methods.  
 
A very recent entry into the toolbox for creating models of patients is the use of learning models based on Generative 
Adversarial Networks (GANs). Anastasio’s team at UIUC have contributed several important papers demonstrating this 
approach.19-20 The Grand Challenge on “Deep Generative Modeling for Learning Medical Imaging Statistics” hosted by 
UIUC and the US FDA, and hosted by the American Association of Physicists in Medicine (AAPM), will provide the 
community with a state-of-the-art understanding of these models’ ability to reproduce visually similar images that also 
preserve task-based relevant statistical properties.21 The beauty of this challenge is that, because the models will be 
trained on a set of digital breast models with known statistical properties,9 the GAN model entries will be able to be 
evaluated against a gold standard in object space. If such GANs can be shown to preserve diagnostically relevant 
information in a task-based sense, they will open new avenues for task-based assessments.  
 
2.2 Models for imaging systems 
 
Solid and steady progress has been made on the expansion of realistic physics models that incorporate recent innovations 
in imaging hardware, including geometries with multiple and/or moving sources, new detector materials and 
mechanisms, and so on. As computing power and storage has grown, so has our ability to model the many physical 
interactions that comprise the imaging process with greater realism and precision. This area of endeavor has long been 
the bedrock of the Physics Conference at the SPIE Medical Imaging Symposium. 
 
Research into the potential for GANs to synthesize images is a more recent area of interest. GANs might be able to learn 
the conversion from one kind of acquisition system to another.22 GANs are also being investigated for their potential to 
learn the forward imaging model so as to produce realistic images from digital body phantoms.23 Much work remains to 
be done to understand the validity of these approaches in terms of their ability to support the task-based evaluation of 
imaging systems.  
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2.3 Models for readers/observers 
 
Broadly speaking, observer models follow two tracks. The first is the study of human perception in order to better 
understand the ability of humans to extract information from images. From such studies, models for human readers are 
being developed for use in the evaluation of imaging tools that are intended to create or display data for human 
interpretation, particularly image reconstruction algorithms, image processing methods, and novel display or 
visualization systems. The state-of-the-science with respect to modeling human perception includes the elucidation of 
the human observer’s template for more types of tasks,24 the creation and validation of models for human interpretation 
that incorporate foveation for visual search in 3D medical images,25 and the prediction of human performance in 
classification tasks via deep learning models.26,27  
 
The second track in the modeling of observers is pursued by those who seek to model the Ideal or Bayesian Observer 
(IO). By definition the IO captures all information in the detected data, without adding noise or uncertainty. The 
difference in performance between the IO and the human observer for a particular task offers a window into the 
opportunity for improved inferences from those images via computer-aided diagnosis, or perhaps in the future computer 
diagnosis. For the purpose of this paper, however, the importance of the IO is in its ability to facilitate the evaluation of 
image acquisition systems on an absolute scale. A search of the SPIE Digital Library will demonstrate that over many 
decades, presentations at the SPIE Medical Imaging Symposium have grown our ability to compute and understand IO 
performance and that of its close cousin, the optimal linear or Hotelling observer, for tasks of increasing range and 
complexity. Moreover, it has long been known that neural networks can approximate a Bayes optimal discriminant.28 
While this was true in theory, in practice the computing requirements did not match the computing power at hand, 
leaving us still limited with respect to the task-based evaluations we could execute for the IO. That reality is rapidly 
changing. The SPIE 2020 Medical Imaging Symposium was a breakout year for papers that presented approaches to 
approximating the ideal observer.29-31 
 
2.4 Statistical methods 
 
Rigorous science requires error bars. Task-based assessments require the incorporation of all sources of uncertainty in 
the evaluation process that contribute to uncertainty in the figure of merit. These sources include the variability in the 
underlying patients being imaged, measurement noise from the imaging system, and uncertainty coming from the 
readers. In the past 10+ years our community has come to appreciate that Multi-Reader, Multi-Case (MRMC) analysis is 
essential for testing the significance of differences in competing imaging modalities for detection and discrimination 
tasks. MRMC methods give the total uncertainty in estimates of ROC-based metrics stemming from the range of case 
difficulty, reader skill and mindset, and their interactions. That’s not particularly new. What is new is the development of 
“split-plot” methodologies that allow for the analysis of more general study designs than the fully-crossed design in 
which every reader reads every case for each modality. Split-plot designs can be used to reduce the number of reads per 
reader and the number of total reads. Furthermore, for the same number of total reads, the split-plot design has been 
found to be more statistically efficient.32-35 

 

There has been considerable progress in recent years in methods for collecting better data from human readers. Data 
from human observers may be needed to serve as the reference standard for circumstances in which other forms of truth 
are not available. A prominent example of this is in pathology applications. In order to assess a new digital pathology 
imaging device, including the many efforts to develop AI/DL methods to assist in pathology tasks, it is common to make 
use of experts for the “truthing” of pathology data. New tools are emerging for estimating truth from panels of expert 
readers, including improved approaches to reader training to reduce reader variability, improved collection interfaces, 
and statistical analysis tools.36,37 Similarly, better approaches are emerging for collecting data from humans who are 
serving as “study” readers in a task-based assessment. These also include improved training methods and data collection 
interfaces that facilitate the collection of more precise reader data on a finer measurement scale.33 US FDA/CDRH 
shares examples of reader training materials and data collection interfaces that facilitate the collection of improved 
reader data, along with powerful statistical software tools for reader or algorithm study design and data analysis.38,39 The 
inclusion of iMRMC statistical tools in the FDA/CDRH Regulatory science tools catalog is further indication of the 
FDA’s interest and support for the development and use of such tools in medical imaging device development and 
review. 
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The role of clinicians in task-based assessments of image quality was highlighted in a recent consensus paper from the 
Society of Nuclear Medicine and Molecular Imaging.40 That group noted that clinicians are important partners in these 
investigations, playing key roles as study readers and expert truthers. They also assist in the selection of appropriate 
clinical tasks and patient populations. 
 
There has also been significant recent progress related to the assessment of imaging systems for tasks related to the 
estimation of quantitative imaging biomarkers (QIBs). RSNA’s Quantitative Imaging Biomarker Alliance (QIBA) 
published a series of papers in 2015 that laid out a comprehensive framework for QIBs, intending to standardize the 
terminology,41 methods for evaluating imaging biomarkers,42 and methods for comparing imaging biomarkers.43 Now 
comes the publication of a set of papers in Academic Radiology that expands QIBA’s earlier work to multiparametric 
quantitative imaging biomarkers.44-49  
 

3. PUTTING IT ALL TOGETHER 
 

With so many advances in models as building blocks for performing task-based assessment of medical imaging devices, 
we now have the opportunity to evaluate medical imaging systems entirely in silico and demonstrate comparable results 
to actual clinical studies. A notable example is the US FDA/CDRH’s Virtual Imaging Clinical Trial for Regulatory 
Evaluation or VICTRE.50 That work set out to replicate an actual clinical trial performed by a company seeking 
marketing authorization in the US for a digital breast tomosynthesis system as a replacement for digital mammography. 
The VICTRE investigators utilized in silico models for the study subjects, the imaging systems under comparison, and 
the image readers. The difference in the estimated ROC-based figures of merit for the two systems was consistent with 
that of the actual trial and estimated at a fraction of the cost.  The tools underlying the VICTRE study are publicly 
available and included in the US FDA/CDRH’s regulatory science tool catalog.51  
 
The development of a metaverse for intelligent healthcare52 will incorporate all aspects of task-based image quality 
assessment: digital models for patients, or so-called digital twins, with patient-specific inserted diseases that are scanned 
in silico to determine the best imaging protocol for that patient. Human and model/AI observers will be essential to the 
task-based evaluations that select the best imaging protocol as well as the interpretation of the actual data that comes 
from the imaging optimization step. To achieve this futuristic vision, our community is working together on many 
collaborative efforts related to data and software sharing. An outstanding and very recent example is the Medical 
Imaging Data Resource Center’s (MIDRC)53 effort to develop an open, curated image data commons and machine 
intelligence computational capabilities. The open data commons will serve many purposes, and for task-based 
assessment applications these include the development and validation of models for patients and scanners as well as 
models for image readers. The sequestered data being set aside by MIDRC is truly intended for task-based assessment of 
AI/DL algorithms. To support MIDRC investigators and the wider community, MIDRC is developing a decision tree to 
assist users in selecting task-based performance metrics.54 This latter effort will encourage the use of consistent metrics 
and our ability to compare the results across studies. Communities of practice and collaboration like that of MIDRC are 
essential. 
 

4. CONCLUDING REMARKS 
 
The language and methodology of “task-based image quality assessment” has become commonplace, with a great many 
papers making use of this phrase in their titles and many talks at the SPIE Medical Imaging Symposium on this topic. 
There truly has been tremendous progress on all aspects and across imaging modalities and pipeline elements. Future 
efforts like that of the VICTRE study and ones like it will continue to bring down the cost of in silico task-based 
assessments as simulation models for each of the components of such studies are developed, validated, and shared. Open 
science in this spirit will reduce the redundancy in small efforts while increasing the likelihood of robustness and 
generalizability of the evaluations that are performed in this manner, leading to improved imaging systems – improved 
derived inferences – for patients.  
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