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1. Introduction

Multiple video cameras of different spectral bands are widely used in the
advanced vision systems to capture more information in biomedical imaging, remote
sensing and other imaging applications. In many cases, images from multiple sensors
need to be integrated into a single synthetic representation for human observers, who are
in general under time constraints, stress and workload for interpretation, detection and
decision making. Image registration is a key step before fusion. Image registration is
also needed for interpreting time evolution of the images in remote sensing and medial
diagnostics.

Image registration applied to a single video sequence is image video sequence
stabilization. The primary means available for image stabilization is an electro-
mechanical stabilizing platform, which is bulky and expensive. Its performance is
degraded with vibration in the critical 0 - 20 Hz range. An automatic electronic image
stabilizer should be able to first estimate components of the scene motion due to the
camera movement and then eliminate those components by warping each frame into
precise alignment with the next frame. Then, if a temporal filter is applied to compute
the frame difference, then the background scene would be eliminated and the moving
targets would be highlighted.

Multiple sensors can act in a synergistic manner. For instance, in two broad
band visible /infrared battle field image sequences, soldiers and trucks can be hidden
behind the smoke in the visible image, but they appear clearly as high contrast hot
objects in the IR images. However, the contrast is extremely low in background of the
IR images, so that one can not locate the hot objects within the background, and one
needs to fuse the IR images with the corresponding visible images.

Challenge in the multiple sensor image registration is to align two images in
spite of feature inconsistency. Some features in one image can do not show up in the
image from another sensor. This is the feature inconsistency problem. Multiple sensors
capture distinguished signatures from the input scene in different spectral bands.
Multisensor imaging system should maximize independence of the acquired data. This
is natural, since if one sensor captures images that are similar or correlated to the images
already obtained by other sensors, then this sensor provides no additional information
and should be removed from the system. The signature independence implies the
features inconsistency.

Image registration and fusion are implemented in the practical image sensing
systems. These are a potential application area of optical image processing. Optical
correlators at the operating rate of 1000 correlations per second have been now built.
Automatic target recognition and tracking using the optical correlators and optimally
designed correlation filters have been demonstrated. However, many practical systems
should accomplish complex tasks using a sequence of image processing algorithms such
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as detection, recognition, identification and tracking, which can be entirely automatic or
assisted with human operator. In general, the tasks of practical and complex image
processing systems can not be accomplished with a single short of correlation with an
optical correlator. Thus, the high -speed optical correlator must be applied and integrated
into the multi -step effective numerical image processing systems.

In this paper we present problematic of image registration, review the existing
methods and show the algorithms that we developed to accomplish IR/visible battle
field image registration. We show that the correlation is one of the basic operations very
useful in many practical image processing systems, and the invariance problem is still
the major issue associated in the correlation. Therefore, the algorithms developed for
invariant optical pattern recognition filters could be useful in those systems. We choose
the feature -based approach. We use multi -scale hierarchical edge detection, edge
focusing and edge salience measure to extract salient edges from the low contrast and
noisy IR image background. We use the Hausdorff distance measure for matching
between the curves from two different modalities. We introduce the image partitioning
technique in the Hausdorff distance matching, so that the global affine transformation is
approximated by local translations. This approach speeds up significantly the
computation of the Hausdorff distance.

2. 3 -D projection

It is well known in the computer vision that 3 -D space information may be
obtained from two or more 2 -D projection images of the same scene. When the camera
is modeled as a pinhole camera, a point M in the 3 -D space is projected into m1 and m2
in the two image planes, respectively, as shown in Fig.1, where cl and c2 are the camera
centers. One camera is rotated and translated in the 3 -D space with respect to another.
From the image point ml and camera center el we know that the object point M should
be on the projection line m1c1, but its position on m1c1 is undetermined. If the image
point m2 of the same point M in image 2 is known, then the position of the point M in

Fig.1 Epipolar Geometry

the 3 -D space can be uniquely determined'. When M is move on the line m1c1 its image
point m2 would move along an epipolar line 1,7,2, in image 2. Reciprocally, when M
moves along the projection line m2c2, its onto image 1 would move along an epipolar
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line l,j in image 1. The epipolar lines l,j and 1m2 are the intersections between the plane
II formed by the object point M and two camera centers c1 and c2 and the image plans Ii
and 12. The key is to establish correspondence between points m1 and m2 in images 1
and 2, such that they are the images of the same object point M.

Under the pinhole camera model a 3 -D scene is projected into a 2 -D image

through the full perspective projection. Let xs be the world coordinate system and x
be the camera geometric coordinate system, whose origin is on the center and the axis z,
is on the optical axis of the camera, then the relation between the world system and the
camera system is

rx
C

Y,

z,

( R T

OT I

x

ys

zs

(1)

where R is the rotation matrix and T is the translations vector in the 3 -D space of the
world system with respect to the camera system. In the camera system an object point
(xc,yc,zc) is projected onto the image plane at (x, y) by

(f 0 0 OVx,
zc y= 0 f 0 0 y, (2)

1 0 0 1 Oz
where f is the focal length of the camera. The combination of Egs.l and 2 describes the
perspective projection from a 3 -D space point (xs,ys,zs) into its image point (x,y). For the
sake of the simplicity we do not introduce the pixel coordinates of the camera here.

If the camera's position and orientation in the 3 -D space and the camera
intrinsic parameters, such as the focal length, aspect ratio and optical center position, are
known (calibrated cameras), according to that shown in Fig.1 the object point can be
reconstructed in the 3 -D space from the two corresponding image points in the two
images. This is a 3 -D stereo vision problem. On the other hand, from a number of pairs
of corresponding points, one can determine the camera rotation and translation matrices
R and T. The is a motion estimation problem.

Image registration needs to determine the deformation of images due to the
camera motion and view angle changes in order to realign the images. The registration
function describes point (x2,y2) in image 2 as a function of point (xj,yj) in image 1,
which can be derived by removing the object point M(xs, ys, z5) from Eqs.(1) and (2),
that results in

m2Fm1 = 0 (3)

where mi = (x; , y ,1) and F is known as the fundamental matrix of the two images,
which depends on the position, orientation and intrinsic parameters of the camera. The
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fundamental matrix F has 9 unknown coefficients. If we can determine 8 matches
between points in Images 1 and 2 we would be able, in general, to determine a unique
solution for F, defined up to a scale factor, and then the registration function.

In the pinhole camera model, the perspective projection described in Eq.2 is
non -linear. The coordinates (x,y) of the image point depend on the depth zc of the object
point. When the average distance from the camera to the center of mass of object L is
much larger than the depth of the 3 -D scene, ze = L + zs and L » zs, one can replace z,
in the right -hand side of Eq.(2) by L, and then Eqs.(1) and (2) become linear, describing
an approximation to the perspective projection. In this case, the registration function can
be easily obtained as2'3

(x

Y2

x
Pi P2 P3

= Y,
P4 P5 P6

i

re
+hx,,y, 1

`e2

(4)

where p; with j = 1, 2, ...6 are the affine transformation coefficients relative to the 3 -D
rotation and translation of the camera, e is the epipolar vector and h(x,y) is the height
function of the scene, which introduces displacements of the image points (x2, y2) along
the epipolar lines and proportional to the heights in the scene. The solutions of Eq.(4)
for the six unknown coefficients p, with j = 1, 2, ...6, h(x,y) and e are not unique. Any
linear polynomial 1(x,y) = ax + by + c can be added to h(x,y), as long as I(x,y)e is
subtracted from the first term in the right -hand side of Eq.(4). The uniqueness of the
solutions may be obtained if the solutions for p, h, and e satisfy a normalization
constraints2 that takes a planar approximation of the height function h(x,y) and subtracts
the planar approximate plane from Eq.(4). Thus, one first puts h(x,y) = 0 in Eq.(4) and
then looks for the least mean square solution (LMS) to estimate the affine coefficients
p;. After the determination of p;, the epipolar vector e and the scene height function
h(x,y) can be recovered from the residuals in the LMS fitting. The LMS solution for
Eq.(4) needs to know a set of corresponding point pairs -i with i = 1, ..., k with k > 3.
When more correspondences k are available, it is advantageous to use all the points to
improve the accuracy of the solution and detect outliers which are false correspondences
in the set.

3. Image matching

To estimate the registration function Eqs.(3) or (4) one needs to determine a set
of point matches between two images. The determination of point correspondences is
the key step for 3 -D stereo vision, motion analysis, image registration and model -based
3 -D object recognition. When there are some characteristic points in the image, such as
corners of 3 -D objects or the landmarks in the remote sensing images, the point pairs are
easy to determine. However, in outdoor battle field images the determination of point
matches is a difficult task, especially for IR image registration, where one needs to
detect and determine point matches in the static image background, where IR images
have typically very low contrast due to the thermal equilibrium in the background.
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3.1 Block matching

One approach is to partition the image into a number of sub -images, located in
a regular grid as shown in Fig.2, and then define a central window in each sub -image as
a template and correlate those block templates with their corresponding sub-images in
another image4. These correlations can be implemented using the optical correlator.

The block matching results in a lattice of displacement vectors, which are
evenly distributed over the image and are then useful to determine the transformation
parameters for the registration function. However, the correlation can account only for
translations. Other deformations, such as similarity or affine transform or local
distortions' may be only approximated by the local translations of the blocks.

C

C

Fig.2 Block matching

The area -based approach for image registration utilizes full image information
and can be applied to any images with rich or poor structure. Cross -correlation -based
matched filter approach is optimal for the robustness against random noise. The
drawback is that this approach can account only for small translations. The method can
fail if the displacement of the bloc exceeds the size of the sub -image. Moreover, the
higher the number of sub -images the higher precision of that approximation, however,
the smaller translations that can be accounted for, and the less image features contained
in the sub -images. The bloc matching is widely used in the video image processing and
compression. With the small bloc size and small translations, the cross- correlation may
be computed by electronic hardware in real -time of video rate. However, when the
block size is large and its translation is large such that the search area is large, the
computation of cross -correlation becomes very expensive. Optical correlator, such as
the joint transform correlator, can be useful for the implementation of the bloc
matching.

3.2 Feature matching

Feature -based image registration is to first detect image features, such as
corners and edges, in the images and then determine the correspondences between the
features in the two images, Finally, to fit the image transformation using the matches.
This approach can account for any image deformation, and the processing speed is
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independent of image displacement. The feature based approach can be insensitive to
multiple sensor modalities by selecting the structural salient features as will discussed
below. It is fast to compute. Many powerful and versatile corner and edge detection,
edge saliency techniques can be used. However, the feature -based approaches may fail
to find matches in the structure -less areas. Its reliability depends on that of the feature
extraction.

4. Image stabilization

Image stabilization is the registration of video sequence from a single camera.
We choose the feature -based method which is more powerful to extract features in the
IR image background and to account for image rotations and affine transformations.

We use the Harris- Stephens corner detector. The operation is to find the local
maxima of the principal curvatures of the image local autocorrelation. The Harris -
Stephens corner detector is efficient to compute and has been shown to be one of the
best corner detectors in terms of repeatability with scale, illumination and view point
changes. It is effective to extract corner points in the texture of the IR outdoor images.
Typically, this corner detector returns hundreds corner points in an outdoor image.

Points are 2 -D features, which are invariant to rotation and scaling and useful
for fitting image transformations. However, points themselves do not carry image
structural information. The corner points detected by Harris- Stephens corners detector
can be the maximum curvature point on object edges, it can also be corners from noisy
and textures. To establish point match, each corner point must be characterized by its
local support and the cross- correlation of the local supports can be used for establishing
initial matches.

4.1 Robust matching

A robust technique for point matching in two images from uncalibrated
cameras is proposed by Zhang'. In one implementation, the local supports of the corners
are of 15 x 15 pixels size and the search areas are of a quarter of the image. The larger
the supports and the search areas, the more expensive the computational cost for the
cross correlation. Thus, the optical cotrelator could be used in this operation. A
thresholding of the correlation scores provides a set of candidate matches. However, in
the results from the cross correlation and thresholding, one point in the first image may
have correlation scores above the threshold with several points in the second image, and
vice versa. This is the ambiguities in the correlation -based matches. For this reason, the
point matches determined by correlation and thresholding are considered only as
candidate matches.

To remove the ambiguities and determine the best matches, and determine the
best matches among the candidate matches . One must find the matches A and B in
images 1 and 2 such that when computing the cross correlations between local support
of A and all point supports in image 2, the point B in image 2 gives the highest
correlation score, and when computing the cross correlations between B and all the
point in image 1, the point A in image 1 gives the highest correlation score. To find the
best matches, a relaxation process is applied. The match strength is defined as a measure
which depends not only on the correlation score but also on the distances to other
candidate matches within neighborhood of a match. The relaxation is an iterative
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edge saliency techniques can be used. However, the feature-based approaches may fail 
to find matches in the structure-less areas. Its reliability depends on that of the feature 
extraction.

4. Image stabilization

Image stabilization is the registration of video sequence from a single camera. 
We choose the feature-based method which is more powerful to extract features in the 
IR image background and to account for image rotations and affine transformation5.

We use the Harris-Stephens comer detector. The operation is to find the local 
maxima of the principal curvatures of the image local autocorrelation. The Harris- 
Stephens comer detector is efficient to compute and has been shown to be one of the 
best corner detectors in terms of repeatability with scale, illumination and view point 
changes. It is effective to extract comer points in the texture of the IR outdoor images. 
Typically, this comer detector returns hundreds comer points in an outdoor image.

Points are 2-D features, which are invariant to rotation and scaling and useful 
for fitting image transformations. However, points themselves do not carry image 
structural information. The comer points detected by Harris-Stephens comers detector 
can be the maximum curvature point on object edges, it can also be comers from noisy 
and textures. To establish point match, each comer point must be characterized by its 
local support and the cross-correlation of the local supports can be used for establishing 
initial matches.

4.1 Robust matching

A robust technique for point matching in two images from uncalibrated 
cameras is proposed by Zhang1. In one implementation, the local supports of the comers 
are of 15 x 15 pixels size and the search areas are of a quarter of the image. The larger 
the supports and the search areas, the more expensive the computational cost for the 
cross correlation. Thus, the optical correlator could be used in this operation. A 
thresholding of the correlation scores provides a set of candidate matches. However, in 
the results from the cross correlation and thresholding, one point in the first image may 
have correlation scores above the threshold with several points in the second image, and 
vice versa. This is the ambiguities in the correlation-based matches. For this reason, the 
point matches determined by correlation and thresholding are considered only as 
candidate matches.

To remove the ambiguities and determine the best matches, and determine the 
best matches among the candidate matches . One must find the matches A and B in 
images 1 and 2 such that when computing the cross correlations between local support 
of A and all point supports in image 2, the point B in image 2 gives the highest 
correlation score, and when computing the cross correlations between B and all the 
point in image 1, the point A in image 1 gives the highest correlation score. To find the 
best matches, a relaxation process is applied. The match strength is defined as a measure 
which depends not only on the correlation score but also on the distances to other 
candidate matches within neighborhood of a match. The relaxation is an iterative
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procedure with the "some- winners- take -all" strategy to minimize an energy function
which is a summation of strengths of all candidate matches.

After the relaxation, we obtain the initial matches whose number is typically
less than one hundred, with still many false matches. The initial matches are then used
to estimate the epipolar geometry described in Eq.(3). A robust technique, namely the
Least Median of Squares, is used in the estimation to discard false matches. The
recovered epipolar geometry is again used to verify the matches with a stereo matching
process. The resultant matches are finally used to determine the unknown coefficients in
the registration function.

The experiments on the robust numerical image match algorithms show that
although the cross correlation is widely used for image matching. Single shot of
correlation followed by thresholding is usually not able to determine the correct matches
in the practical applications. Additional operations such as the bi- directional correlation,
relaxation, robust epipolar geometry estimation and stereo matching must be used. If the
optical correlator will be used to accelerate the computation of cross correlation, It
would be integrated into the numerical processing system. Some numerical processing
of optical correlation data would imply.

4.2 Greylevel Differential Invariants

In the ground image registration the most deformations are local translations
due to the camera movement and panning, so that the cross correlation -based method is
effective. However, for aerial images with important rotation, scaling and affine
distortion, the cross- correlation can fail to provide correct matches, because it is not
invariant to rotation and scale changes. Moreover, for the corner points located on the
depth discontinuity boundaries, whose local supports may be sheared with the viewpoint
changes, the cross -correlation fails to find correspondences. We then use the Greylevel
Differential Invariants (GDI) instead of the cross correlation for determining point
matches6. The corners are still detected using the Harris- Stephens detector. Then the
corner points are described by the GDI numerical features that are computed on a local
support centered at the points. The GDI are nonlinear combinations of the low order
derivatives (up to third order) of the image grey scale level. Those combinations are
built to be invariant to rotation, due to the rotational symmetry of the GDI. Numerical
differentiation of the digitized image is unstable, therefore the operation includes
Gaussian smoothing of the image. For IR noisy image a large Gaussian of ß = 7 was
used.

The GDI's are also invariant to scaling. However, the local supports around the
corner points are not segmented from the image. Its range is fixed in the algorithms and
can not change with the unknown image scaling. To obtain the scale invariance we
compute the GDI's for a set of images with the scales 6 = (6 /5)1co where i = -n, .., -1,
0, 1, ...n and 6o is the reference scale of the original image. When n = 4, the scale factor
ranges from 0.48 to 2.07 and 9 GDI's are computed for a keypoint. The is the multiscale
representation that describes a keypoint in the scale- space.

The initial matches are determined in the GDI feature space. The Mahalanobis
distance is used to determine the nearest neighbour using the k -d tree representation.
The matches are verified in scale -space at multiple scales. We applied the GDI approach
to an IR aerial image sequence with important rotations and scale changes. The number
of matches returned in this approach was about 10 - 20, much less than that returned in
the Zhang's approach.
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From the initial matches, we first remove gross false matches using a test on
the gradient angle at every matched point. The remaining matches are then used to
determine the unknown coefficients in the registration function Eq.(4). For the aerial
images we use the orthographic projection as a close approximation to perspective
projection. Since the classical lease mean square method is sensitive to outliers, an M-
estimation which is robust to outliers was used. By using the multiscale GDI matching,
the registration is invariant to rotation and scale, and is computationally effective.
However, when affine distortions, namely different scaling in horizontal and vertical
directions, occur in the aerial image sequence, GDI failed to provide correct initial
matches.

5. Multisensor image registration

Challenge in the multiple sensor image registration is the feature inconsistency.
especially, for the images from two well separated spectral bands (visible and 8-12 gm
IR bands). The radiometric data from IR passive sensors consist of 1) energy emitted by
thermal radiation from the object bodies; 2) atmospheric emission reflected from object
surfaces. In general, the gray -scale level of IR images depend on differences in body
temperature, emissivity and reflectivity of the objects in the scene. The IR images have
high contrast for hot objects in the scene, which are in most cases moving targets and
are therefore not landmarks useful for registration. Image registration should rely on the
static objects on the background of the scene, where, unfortunately, the IR outdoor
images have very low contrast because the background objects have uniform
temperature in the thermal equilibrium state. The background in the outdoor IR image is
usually of very low contrast and noisy, or simply a dark region. Feature extraction and
image registration based on the background are difficult.

There exist significant gray -level disparities between the IR and visible image.
The thermal emitters are not necessarily good visual reflectors. A surface of high visual
reflectivity (white surface) in visible band usually has low emissivity, so that the bright
objects in the visible image may be dark in the thermal scene and vice versa. The sky is
usually the brightest region in the visible image. It is, however, a dark region in the IR
image because of the low temperature and the lack of reflectance. This is the reversal of
contrast polarity between the visible and IR images.
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Fig.3 Contrast reversed IR image (left) and visible image (right)
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estimation which is robust to outliers was used. By using the multiscale GDI matching, 
the registration is invariant to rotation and scale, and is computationally effective. 
However, when affine distortions, namely different scaling in horizontal and vertical 
directions, occur in the aerial image sequence, GDI failed to provide correct initial 
matches.

5. Multisensor image registration

Challenge in the multiple sensor image registration is the feature inconsistency, 
especially, for the images from two well separated spectral bands (visible and 8-12 pm 
IR bands). The radiometric data from IR passive sensors consist of 1) energy emitted by 
thermal radiation from the object bodies; 2) atmospheric emission reflected from object 
surfaces. In general, the gray-scale level of IR images depend on differences in body 
temperature, emissivity and reflectivity of the objects in the scene. The IR images have 
high contrast for hot objects in the scene, which are in most cases moving targets and 
are therefore not landmarks useful for registration. Image registration should rely on the 
static objects on the background of the scene, where, unfortunately, the IR outdoor 
images have very low contrast because the background objects have uniform 
temperature in the thermal equilibrium state. The background in the outdoor IR image is 
usually of very low contrast and noisy, or simply a dark region. Feature extraction and 
image registration based on the background are difficult.

There exist significant gray-level disparities between the IR and visible image. 
The thermal emitters are not necessarily good visual reflectors. A surface of high visual 
reflectivity (white surface) in visible band usually has low emissivity, so that the bright 
objects in the visible image may be dark in the thermal scene and vice versa. The sky is 
usually the brightest region in the visible image. It is, however, a dark region in the IR 
image because of the low temperature and the lack of reflectance. This is the reversal of 
contrast polarity between the visible and IR images.
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The gray level disparity between the IR and visible images of real -world natural out-
door scene is much more complex than the simple contrast polarity reversal.

Figure 3 shows a contrast reversed IR image compared with the corresponding
visible image of the same scene. The gray level distributions in most regions in the two
images become similar, although there are still important gray -level disparities. Clouds
are brighter than the sky in the visible image, owing to its higher reflectivity. They are
also brighter than the sky in the IR image because of its higher reflectivity and
emissivity. As a result, in the contrast polarity reversed IR images, the clouds are darker
than the sky, whereas they are brighter than the sky in the visible image. Hence, a
simple reversal of contrast polarity can not remove all the contrast reversal and gray
level disparities. Also, shadows in the visible images are absent in the IR images.

Because of the gray scale level disparity and contrast polarity reversal the area -
based block matching methods and the feature -based methods using the cross
correlation or GDI feature matching of the gray scale levels in the local area supports, as
described in Sections 4, failed to determine point matches. Several approaches have
been proposed to bypass the feature inconsistency problem for multiple sensor image
registration.

5.1 Laplacian pyramid

In some applications, one can transform two dissimilar multisensor images into similar.
The intensities of the Laplacian pyramid images are insensitive to polarity reversals of
contrast in the visible and IR images'. Figure 5 shows two step edges with opposite
polarities of contrast. The edges are smoothed by the Gaussian filter. The Laplacian
pyramid coefficient is the difference between the original edge and the smoothed edge.
This is the Laplacian pyramid image at a resolution level determined by the size of the
Gaussian smoothing function. When we take the absolute values of the Laplacian
pyramid coefficients, the two Laplacian pyramid images become the same for the two
contrast reversed step edges. Then, the area -based image registration can be applied to
the Laplacian pyramid image intensities'.
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Fig.4 Two step edges with opposite polarities, smoothed by Gaussian filter,
their Laplacian pyramid and absolute coefficients of the Laplacian pyramid.

The high frequency details in the image are lost in the Gaussian pyramid by the
low -pass filtering and down sampling. One has to compute the difference between the
averaged image and the original image in two successive pyramid levels. These difference
images contain the detail information of the image. All the difference images form a new
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also brighter than the sky in the IR image because of its higher reflectivity and 
emissivity. As a result, in the contrast polarity reversed IR images, the clouds are darker 
than the sky, whereas they are brighter than the sky in the visible image. Hence, a 
simple reversal of contrast polarity can not remove all the contrast reversal and gray 
level disparities. Also, shadows in the visible images are absent in the IR images.

Because of the gray scale level disparity and contrast polarity reversal the area- 
based block matching methods and the feature-based methods using the cross 
correlation or GDI feature matching of the gray scale levels in the local area supports, as 
described in Sections 4, failed to determine point matches. Several approaches have 
been proposed to bypass the feature inconsistency problem for multiple sensor image 
registration.

5.1 Laplacian pyramid

In some applications, one can transform two dissimilar multisensor images into similar. 
The intensities of the Laplacian pyramid images are insensitive to polarity reversals of 
contrast in the visible and IR images7. Figure 5 shows two step edges with opposite 
polarities of contrast. The edges are smoothed by the Gaussian filter. The Laplacian 
pyramid coefficient is the difference between the original edge and the smoothed edge. 
This is the Laplacian pyramid image at a resolution level determined by the size of the 
Gaussian smoothing function. When we take the absolute values of the Laplacian 
pyramid coefficients, the two Laplacian pyramid images become the same for the two 
contrast reversed step edges. Then, the area-based image registration can be applied to 
the Laplacian pyramid image intensities7.

Fig.4 Two step edges with opposite polarities, smoothed by Gaussian filter, 
their Laplacian pyramid and absolute coefficients of the Laplacian pyramid.

The high frequency details in the image are lost in the Gaussian pyramid by the 
low-pass filtering and down sampling. One has to compute the difference between the 
averaged image and the original image in two successive pyramid levels. These difference 
images contain the detail information of the image. All the difference images form a new
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set of sequences that constitute another pyramid called the Laplacian pyramid. The original
signal can be reconstructed exactly by summing the Laplacian pyramid. The Laplacian
pyramid is a multiresolution representation and the Laplacian pyramid images represent
detail information of the image. Because image gray -scale level disparities due to the
sensor spectral responses are mostly low spatial frequencies, so that the Laplacian
pyramid images contain also less gray level disparity. Hence the area -based image
registration can be applied to images preprocessed by the Laplacian pyramid.

5.2 Phase matching

Images from multiple sensors have different radiometric intensity distributions
due to the different spectral responses of the sensors. Those differences appear mostly
as slow variations over wide regions in the image, such as sky, land and forest, which
are usually represented with low spatial frequencies and are concentrated in a narrow
low frequency band. In the Fourier transform -based registration8, the displacement is
found by cross -correlation between two images. The location of the cross -correlation
peak mainly depends on the Fourier spectrum phase and is insensitive to Fourier
spectrum energy. One can then whiten the Fourier spectrum and use the phase -only
cross -correlation for the registration4. In this approach, the low and high frequencies
contribute equally to the cross -correlation. Therefore, contribution of the high
frequencies is greatly highlighted, compared with the conventional cross -correlation.
The location of the cross -correlation peak would not change if the image intensity
variations are limited to a narrow spatial frequency band. The Fourier phase correlation
registration method is then relatively independent of the sensors.

5.3 Feature -based matching

Both the Laplacian pyramid and phase matching technique benefit from the use
of high spatial frequencies of the image for bypass the feature inconsistency problem.
The Laplacian pyramid represents detailed information, namely contours, in the image.
It is well known from the optical phase -only filter experience that the whitening of the
Fourier spectrum in the phase matching approach highlights the high spatial
frequencies. However, the direct edge detector would be more powerful, precise and
versatile than the Laplacian pyramid and whitening Fourier spectrum for the image
feature extraction.

6. Multiscale edge detection

The feature -based multisensor image registration utilizes the fact that whatever
the spectral responses of multiple sensors, two real world objects in the scene would
always appear still differently. The boundaries of the objects may be then used as
matching entities for multi- sensor image registration. In the 3 -D real world scene,
objects are separated from the background by depth discontinuities, which are usually
manifest as intensity discontinuities in the 2 -D images. Those edges and boundaries
represent structures in the image, that are common for multiple image types and can be
used for multiple sensor image registration.

Edges are defined as points where the modulus of gradient is a maximum in the
gradient direction. Along an edge the image intensity can be singular in one direction
while varying smoothly in the perpendicular direction. Edges can be created by
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feature extraction.

6. Multiscale edge detection

The feature-based multisensor image registration utilizes the fact that whatever 
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occlusions, shadows, sharp changes of surface orientation, changes in reflectance
properties, or illumination. In IR images of a 3 -D scene, most edges represent occlusions
and depth discontinuities between objects in the scene, which represent structural
information in the image.

6. 1 IR image edge detection

A particular difficulty arises in the edge detection for IR/visible image
registration. Image registration requires to extract common features which are static in
the scene background. In most cases, the background objects in the IR images have the
same thermal equilibrium temperature, so that the contrast in the IR image background
is related to only the differences in the emissivities and reflectivities of the object
surfaces and are therefore very low. Also, the IR images are typically noisy.

The first derivative of Gaussian is usually called Canny edge detector9. After
the filtering, a non -maximum suppression process keeps the pixels where the values of
the output are the local maximum in the direction of the gradient. The edge linking uses
a hysteresis thresholding. We first determine edge pixels, which are above a high
threshold. Then, among all other local maxima, which are above a low threshold, we
keep only those pixels that are located in the neighborhood of the edge pixels. The
parameters in the Canny edge detector are the width of first derivative of Gaussian filter
O and the low and high threshold values.

One problem of the Canny edge detector is its sensitivity to threshold values.
The non -maximum suppression in the Canny detector is excessively reliant on the
estimation of the gradient angle and so often fails to mark edge pixels at junctions,
corners and even on some smooth curve portions where the contrast changes are too
poorly defined. This is the reason for broken edges. When the response of an edge point
is close to the detection threshold, a small change in edge strength or in the pixellation
may cause a large change in edge topology, that makes the extracted edges suspicious,
non -reliable, especially near the corners. The sensitivity to noise is another important
problem in the edge detection. The noise in IR images occur as local fluctuations of the
image brightness function, which have strong derivative magnitudes, but represent
unnecessary image details unrelated to image structure. To extract structural edges from
the noisy edge map we use the large Canny filter of a ? 6 -7, which corresponds to a
filter size of 37 - 43 pixels. In this case the structural edge is a continuous curve, such as
horizon in the ground images, so that the curve length thresholding can be applied to
extract the horizon in the edge map. However, with a large O , the extracted horizon
line does not follow the real contour at high curvature. The larger the filter support a,
the less broken the edges are, and, however, the more image details are filtered out by
the large size filter, resulting in a loss of edge localization. Therefore, the multi -scale
edge detection is used to recover the localization in the coarse edges. We developed two
multiresolution edge detection schemes: hierarchical edge detection and edge focusing.

6.2 Hierarchical Edge Detection

First, the horizon curve is detected at a coarse level with a large Canny edge
detector which smoothes the images with a Gaussian of large support ao. The horizon is
usually the longest curve in the image. For favoring continuity of the extracted curve, no
thresholding on the gradient magnitude is applied, such that the horizon appears as a
continuous curve or, at least, less broken. Then, the horizon is extracted from the noisy
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properties, or illumination. In IR images of a 3-D scene, most edges represent occlusions 
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same thermal equilibrium temperature, so that the contrast in the IR image background 
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the output are the local maximum in the direction of the gradient. The edge linking uses 
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corners and even on some smooth curve portions where the contrast changes are too 
poorly defined. This is the reason for broken edges. When the response of an edge point 
is close to the detection threshold, a small change in edge strength or in the pixellation 
may cause a large change in edge topology, that makes the extracted edges suspicious, 
non-reliable, especially near the corners. The sensitivity to noise is another important 
problem in the edge detection. The noise in IR images occur as local fluctuations of the 
image brightness function, which have strong derivative magnitudes, but represent 
unnecessary image details unrelated to image structure. To extract structural edges from 
the noisy edge map we use the large Canny filter of o > 6-7, which corresponds to a 
filter size of 37 - 43 pixels. In this case the structural edge is a continuous curve, such as 
horizon in the ground images, so that the curve length thresholding can be applied to 
extract the horizon in the edge map. However, with a large O , the extracted horizon 
line does not follow the real contour at high curvature. The larger the filter support a, 
the less broken the edges are, and, however, the more image details are filtered out by 
the large size filter, resulting in a loss of edge localization. Therefore, the multi-scale 
edge detection is used to recover the localization in the coarse edges. We developed two 
multiresolution edge detection schemes: hierarchical edge detection and edge focusing.

6.2 Hierarchical Edge Detection

First, the horizon curve is detected at a coarse level with a large Canny edge 
detector which smoothes the images with a Gaussian of large support o0. The horizon is 
usually the longest curve in the image. For favoring continuity of the extracted curve, no 
thresholding on the gradient magnitude is applied, such that the horizon appears as a 
continuous curve or, at least, less broken. Then, the horizon is extracted from the noisy
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edge map by a curve length thresholding. In the cases where the horizon curves are still
broken, we apply the edge saliency measure and combine both edge and region
information in order to ensure the extraction of the horizon at the coarsest level, as
explained in Section 6.

The coarse horizon is used to guide the search of edges at fine scale. We define
a sub -image in the neighborhood of the coarse edge in the original image. The sub -
image covers the region along the horizon with 40 pixels above and 10 pixels below
each coarse horizon point. The choice of the sub -image size is according to the
observation that the images of trees on the hill were cut by the smoothing at the coarse
scale. To recover the top of trees we need a search in a large region above the horizon
curve. We then apply the Canny edge detector with a small filter width a within the sub -
image. In the experiment, the fine Canny filter was with 0 = 0.7 for visible and
0 = 1.5 for IR images. The noise still exists after the Canny edge detection at the fine
scale. However, this noise is within the sub -image zone and may be removed easily by a
curve length thresholding, that results in a clearly defined horizon curve. A specific
modification on the Canny edge detector was made to prevent the artificially defined
sub -image boundaries from appearing as new edges.

Fig.5 Results of Hierarchical Edge Detection

The coarse horizon extracted from an IR image is shown in Fig.5a, where
00 = 7.0 , the minimum length threshold applied was 500 pixels. The sub -image is

shown in Fig.5b. Figure 5c shows the fine edges obtained by applying a fine Canny
edge detector with 0 = 1.5 .

The hierarchical edge detection is quit reliable and fast. Since at the fine scale
the edge detection is guided by the coarse level edge, the search in large area is avoided,
that reduces the computational cost. The shortcoming of the algorithm is the ad -hoc
determination of sub -images.

6.3 Edge Focusing

Edge focusing is a coarse -to -fine edge tracking algorithm for recovering the
edge points at the finest sca1e10. The scale -space tracking is implemented in a
continuous manner. With continuous scaling, the edges are gradually focused by
varying the resolution continuously, and moving in the scale space with sufficiently
small steps, such that the edge element do not jump farther away than one pixel between
successive steps. Our implementation of edge focusing is as following:
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1. Detect edge using Canny Detector with the Gaussian smoothing O0 sufficiently
large so that horizon curve is detected;

2. Extract the horizon using a threshold on the curve length; The horizon curve is
denoted as E(i, 1,0 0) . If (i, j) is an edge point, then E(i, j, 0) =1.

3. Detect edges E(i, j, O k) in a window centered at each edge point E(i, j, O
k -1 )

using the Canny edge detector of size O k = (3k-1 - AO with k = 1,2,3... and

Do = 0.5 . The window size is 7 X 7 , when 0k > 2.0 , and is 5 X 5 when

1.O5_ Ok <_2.O, and is3X3 when Ok <1.0.
4. Go on step 3) until a weak Gaussian smoothing of size aK

In the successive Canny edge detection, after application of the first derivative of
Gaussian filter the non -maximum suppression process is applied which keeps only the
local maximum in the gradient direction. There is no threshold at finer resolution. The
only threshold is on the curve length applied at the coarsest scale G°.

Bergholm1° investigated the deformation of four elementary contour structures:
step edge, corner, double edges and edge box. During the edge detection, those contours
are generally deformed in four ways: rounding -off, expansion, transformation into
circles, or merger, owing to the large Gaussian average operator which blurs the image.
In each of the four cases, Bergholm showed that the displacement vector, describing the
deformation of the edge contour, is normally of length within the range from 0 to
2 I Ma , where a is the width of the Canny edge detector, Da is the increment of size of
the successive Canny filters. Therefore, if I AG = 0.5, the displacement of the edge
points would be normally less than one pixels, so that corners and junctions may be
recovered with a precision less than one pixel.

Real world images contain mostly ramp edges instead of ideal step edges. It is
easy to show that the Gaussian blurring operating on a ramp edge always yields smaller
displacement than that yielded on a step edge as affirmed by Bergholm. A ramp edge
may be modeled as a step edge smoothed by a Gaussian G whose size 01 depends on

the imaging condition and on the camera. Let r(x, y) denote the step edge and
f(x, y) the ramp edge in gray level image, then

f (x, y) = r(x, y) OO G(o1)

where O denotes the convolution. When we use Canny Edge Detector, the image is
blurred again with a Gaussian smoothing whose size O2 depends on the scale of the

edge detector. Let g (x, y) denote the blurred ramp edge before computing the first
derivative, then

g(x,y) =.f(x,y) G(0 2)
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In the successive Canny edge detection, after application of the first derivative of 
Gaussian filter the non-maximum suppression process is applied which keeps only the 
local maximum in the gradient direction. There is no threshold at finer resolution. The 
only threshold is on the curve length applied at the coarsest scale a0.

Bergholm10 investigated the deformation of four elementary contour structures: 
step edge, comer, double edges and edge box. During the edge detection, those contours 
are generally deformed in four ways: rounding-off, expansion, transformation into 
circles, or merger, owing to the large Gaussian average operator which blurs the image. 
In each of the four cases, Bergholm showed that the displacement vector, describing the 
deformation of the edge contour, is normally of length within the range from 0 to 
21 Act |, where a is the width of the Canny edge detector, Ac is the increment of size of 
the successive Canny filters. Therefore, if | Act | = 0.5, the displacement of the edge 
points would be normally less than one pixels, so that comers and junctions may be 
recovered with a precision less than one pixel.

Real world images contain mostly ramp edges instead of ideal step edges. It is 
easy to show that the Gaussian blurring operating on a ramp edge always yields smaller 
displacement than that yielded on a step edge as affirmed by Bergholm. A ramp edge
may be modeled as a step edge smoothed by a Gaussian G whose size O x depends on 
the imaging condition and on the camera. Let r(x, y) denote the step edge and 
f (x, y) the ramp edge in gray level image, then

f(x,y) = r(x, y)®G(ox)

where ® denotes the convolution. When we use Canny Edge Detector, the image is 
blurred again with a Gaussian smoothing whose size 02 depends on the scale of the 
edge detector. Letg(x, y) denote the blurred ramp edge before computing the first 
derivative, then

g(x,y) = f(x, y)®G(o2)
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therefore

g (x, y) = r(x, y) O G(o, ) O G(o 2 ) = r(x, y) O (G(o, ) O G(o 2 ))

which is equal to

g(x, y) = r(x, y) 0 G(V6i + (72 )

step edge

corner

f5.

II
', ramp edge

by smoothing

c40-1 +o
Fig.6 Rounding -off displacement for a ramp edge

detected comer

Displacement of comer

Therefore, the length of rounding -off displacement p from the corner of ideal step edges

to the detected corner is equal to cV61 + 62 , where c is a constant. However, the
displacement from the center of the ramp corner to the detected corner would be

proportional to f 6i + 62 - ai, as illustrated in Fig. 6 and would be less than a2.
Therefore, if I oa2 = 0.5 in the edge focusing, the displacement of the ramp edge
corner would be less than one pixels.

In our IR images the ramp edges of trees can be very slow of more than 20
pixels wide, corresponding to a large a, more than 10. The edges around the trees were
cut completely when a Canny edge detector of a2 = 7 was applied. This is because the

large displacement of the corner V0-1 + 62 . However, using the edge focusing we
were able to recover the edges and tops of the trees, which would be important for the
image registration.

In our IR images the ramp edges of trees can be very slow of more than 20
pixels wide, corresponding to a large al more than 10. The edges around the trees were
cut completely when a Canny edge detector of a2 = 7 was applied. This is because the

large displacement of the corner v 2 + 62 . However, using the edge focusing we
were able to recover the edges and tops of the trees, which would be important for the
image registration.
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displacement from the center of the ramp comer to the detected corner would be
V2 2 .
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Therefore, if | A021 = 0.5 in the edge focusing, the displacement of the ramp edge 
corner would be less than one pixels.

In our IR images the ramp edges of trees can be very slow of more than 20 
pixels wide, corresponding to a large a, more than 10. The edges around the trees were 
cut completely when a Canny edge detector of ct2 = 7 was applied. This is because the

V2 2
Gy + (72 . However, using the edge focusing we

were able to recover the edges and tops of the trees, which would be important for the 
image registration.

In our IR images the ramp edges of trees can be very slow of more than 20 
pixels wide, corresponding to a large CTi more than 10. The edges around the trees were 
cut completely when a Canny edge detector of ct2 = 7 was applied. This is because the

large displacement of the comer-^<7j +<72 . However, using the edge focusing we
were able to recover the edges and tops of the trees, which would be important for the 
image registration.
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We implement the edge focusing algorithm with the filter size increment
DO = 0.5 and varying size windows. We chose to use the window size larger than the
usually used, 3 x 3, so that the gradient magnitude values can be evaluated at the two
neighboring pixels, because in the non -maximum suppression the determination of an
edge pixel requires to compare with at least two neighboring pixels. We believe that the
length of rounding -off displacement p can be larger than one pixel, because the real
ramp edges in our IR images were noisy and do not follow the theoretical model
described in the precedent.

Fig.6. Experiment results of Edge Focusing. Right Visible image Left Infrared image.

For images shown in Fig.6, we first detected the coarse horizon with O o = 4.5 for

visible image and O o = 7.0 for IR image using Canny Edge Detector. Then we

applied the edge focusing with the scale step DO = 0.5 and the varying size windows.
The final scale was o = 0.7 for visible image and o = 1.5 for IR image. Figure 6
shows the extracted edges which follow nicely the silhouette of the hill with some flat
tops of trees recovered in both visible image and infrared image.

7. Hausdorff distance

Given a set of salient structural edges from each image, the next step is to
determine the image transformation parameters that are useful for aligning those
features. The search for the optimal image transformation can be implemented in several
ways. Most feature matching methods determine the correspondences between the
elements of the feature sets, and then determine the transformation parameters, as the
two approaches described in Section 2. Once a set of correct matches is found the fitting
to transformation is, in general, quick to compute. The drawback is the prohibitive cost
of detecting and eliminating false matches. Its advantage is that once a set of correct
matches is found the image transformation is, in general, quick to compute.

Transformation space methods is the direct search in the transformation space
to match two given sets of features, where no explicit correspondences between features
are given. The approach can be prohibitively expensive because the search space is
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applied the edge focusing with the scale step Ao = 0.5 and the varying size windows. 
The final scale was O = 0.7 for visible image and 0=1.5 for IR image. Figure 6 
shows the extracted edges which follow nicely the silhouette of the hill with some flat 
tops of trees recovered in both visible image and infrared image.

7. Hausdorff distance

Given a set of salient structural edges from each image, the next step is to 
determine the image transformation parameters that are useful for aligning those 
features. The search for the optimal image transformation can be implemented in several 
ways. Most feature matching methods determine the correspondences between the 
elements of the feature sets, and then determine the transformation parameters, as the 
two approaches described in Section 2. Once a set of correct matches is found the fitting 
to transformation is, in general, quick to compute. The drawback is the prohibitive cost 
of detecting and eliminating false matches. Its advantage is that once a set of correct 
matches is found the image transformation is, in general, quick to compute.

Transformation space methods is the direct search in the transformation space 
to match two given sets of features, where no explicit correspondences between features 
are given. The approach can be prohibitively expensive because the search space is
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generally very large. However, outliers are easily handled by using rank order statistics.
A strategy for efficiently searching the parameter space is given by Huttenlocher et al."
In view of the large proportion of outliers in feature based multi -modal image alignment
a transformation space method based on the directed Hausdorff distance was
implemented. The size of the search space is reduced by partitioning the image into
blocks and searching for translations that minimize the Hausdorff distance between
corresponding blocks. The assumptions are that the motion can be locally approximated
by simple translations of blocks, and the percentage of outliers and an error bound for
the feature alignment are known approximately.

We are given by two binary feature sets consisting of points and edges. There
are no explicit feature correspondences. The optimal match between the two sets may
be found by cross -correlation. However, the points and edges have no geometric size in
mathematical sense. This correlation would very sensitive to noise in the features sets,
so that instead the distances between the two feature sets may be computed. The
Hausdorff distance is defined by

A= (a1,...,am} and B = [b1,...,b}
H (A, B) = max(h(A, B), h(B, A))

max min
h(A, B) _

aE A be B a-bll

where A and B are point sets, H is the generalized Hausdorff distance and h is the
directed Hausdorff distance. When the set B is aligned with the set A, the minimum
distances between B and A result, and there is still one point in B whose distance to any
point in A remains as the maximum among those minimum distances, that is defined as
the directed Hausdorff distance from B to A. Inversely, when the set A is aligned with
the set B, there is one point in A whose distance to any point in B (not necessarily to the
point in B that gives the directed Hausdorff distance h from B to A) remains as the
maximum among the minimum distances, that is defined as the directed Hausdorff
distance from A to B. The generalized Hausdorff distance is the maximum among the
directed and inverse Hausdorff distances.

To compute the Hausdorff distance between the image A and model B, we first
build a distance transform map of A in which the value at every pixel represents the
distance from that pixel to a nearest point in the set A. Then we superimpose the model
point set B with its all possible distorted versions on the distance transform map of A.
The minimum distances from every point in B to the point set A can be then easily
sorted in a decreasing order.

In the presence of outliers the Hausdorff distance will return the greatest
distance which is likely due to an outlier. To handle outliers, the partial directed
Hausdorff distance is introduced as

hk (A, B) _
kth min

aEA bEBIIa
-bII.

which allows to accept (100 -k)% of outliers and evaluates the k% ranked distances for
determining the Hausdorff distance.
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The Hausdorff distance can be prohibitively expensive because the search
space is generally very large if all the possible distortions of the model must be
considered. We reduce the size of the search space by partitioning the image into blocks
and searching for translations that minimize the Hausdorff distance between
corresponding blocks. The idea is similar to that of the block matching described in
Section 3 for estimation of displacements of the block centers based on the image areas.
The assumptions are that the motion can be locally approximated by simple translations
of blocks, and the percentage of outliers and an error bound for the feature alignment
are known approximately.

The alignment method using Hausdorff distances proceeds as follows for a pair of
images after extraction of the salient edges. We found the horizons extracted by
multiscale edge detection do not suffice to align two images, because the horizon
features are not evenly distributed over the image. Thus, extracting structural features in
the other parts of image is necessary. Figure 7 shows the edge features used for the
Hausdorff distance matching

na

na
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50 In 150 200 .0 MO 350 100 430 520

Fig.7 Edges extracted in IR and Visible battle field images.

The process steps are as following
1) Compute a quadtree partition of each edge image such that no block without edge

points is further subdivided. The partition with fewer blocks is retained for both
images. Define a set of model edge points for the first block in image 1 from the
edge points that lie within that block. Create a model image from these edge points.

2) Define a set of subimage edge points from the corresponding block in image 2 from
the edge points within the block extended by a border whose dimensions
correspond to the largest expected vertical and horizontal displacements. Create a
target image from these edge points.

3) Compute the directed partial Hausdorff distance under a translation transformation
from the model image to the target image. The translation which minimizes the kth
ranked distance is retained.

4) Repeat steps 2 and 3 for the remaining non -empty blocks. If at least 3 blocks
provide local translation estimates from step 3 then the global affine transformation
is estimated, the nonreference image is resampled according the global affine
transformation and the images are fused. The image fusion is accomplished by an
appropriately weighted combination of the aligned images brightness values.

Figure 7 shows a scene taken simultaneously by a daylight and IR camera at
Defense Research Establishment Valcartier. The viewpoints of the two cameras are
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points is further subdivided. The partition with fewer blocks is retained for both 
images. Define a set of model edge points for the first block in image 1 from the 
edge points that lie within that block. Create a model image from these edge points.

2) Define a set of subimage edge points from the corresponding block in image 2 from 
the edge points within the block extended by a border whose dimensions 
correspond to the largest expected vertical and horizontal displacements. Create a 
target image from these edge points.

3) Compute the directed partial Hausdorff distance under a translation transformation 
from the model image to the target image. The translation which minimizes the Ath 
ranked distance is retained.

4) Repeat steps 2 and 3 for the remaining non-empty blocks. If at least 3 blocks 
provide local translation estimates from step 3 then the global affine transformation 
is estimated, the nonreference image is resampled according the global affine 
transformation and the images are fused. The image fusion is accomplished by an 
appropriately weighted combination of the aligned images brightness values.

Figure 7 shows a scene taken simultaneously by a daylight and IR camera at
Defense Research Establishment Valcartier. The viewpoints of the two cameras are
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displaced slightly and there is a slight relative rotation about the optical axis which
would yield a very poor fused image if no alignment is made. The quadtree
decomposition stops at the first level, i.e., there are 4 blocks. The salient edges include
the silhouette of the hill and some ground structure, which are overlayed on the images.

Fig.8 . Aligned and fused IR and visible images. Fusion is by
weighted combination of image brightness values after alignment

Finally, Figure 8 shows the fused aligned images. The salient edges are
registered in each of 3 blocks, the fourth block contains no edge points. The Hausdorff
distance is used to find the optimal displacement assuming 5 percent outliers for the
blocks covering the hill edge and 10 percent outliers for the edge in the lower right
block. The specified search strategy finds the translation for each block such that 90
percent of the visible image edge points are no more than 5 pixels from some IR image
edge point for the corresponding block. The local displacements are then used to
determine the global affine transformation to register the two images. The estimated
(x,y) displacements for the blocks upper left, upper right and lower right that are
supplied to the global affine estimator for aligning the visible image to the IR image are
(33, -3), (- 11, -7) and (- 8, -11) respectively.

The estimated affine transformation parameters that map point p in the visible
image to the point p' in the IR image such that p' = Mp +t are

M = [ 0.8239 0.0544] and

t = (17.1925, -6.2471)T.
[-0.0179 0.9897]

Note that the image coordinate system origin is top left with positive x to the right and
positive y down.

1999 Euro-American Workshop on Optoelectronic Information Processing / 189

displaced slightly and there is a slight relative rotation about the optical axis which 
would yield a very poor fused image if no alignment is made. The quadtree 
decomposition stops at the first level, i.e., there are 4 blocks. The salient edges include 
the silhouette of the hill and some ground structure, which are overlayed on the images.

Fig.8 . Aligned and fused IR and visible images. Fusion is by 
weighted combination of image brightness values after alignment

Finally, Figure 8 shows the fused aligned images. The salient edges are 
registered in each of 3 blocks, the fourth block contains no edge points. The Hausdorff 
distance is used to find the optimal displacement assuming 5 percent outliers for the 
blocks covering the hill edge and 10 percent outliers for the edge in the lower right 
block. The specified search strategy finds the translation for each block such that 90 
percent of the visible image edge points are no more than 5 pixels from some IR image 
edge point for the corresponding block. The local displacements are then used to 
determine the global affine transformation to register the two images. The estimated 
(x,y) displacements for the blocks upper left, upper right and lower right that are 
supplied to the global affine estimator for aligning the visible image to the IR image are 
(33,-3), (-11,-7) and (-8,-11) respectively.

The estimated affine transformation parameters that map point p in the visible 
image to the point p’ in the IR image such that p' = Mp+t are

M = [ 0.8239 0.0544] and

t = (17.1925, -6.2471) T.
[-0.0179 0.9897]

Note that the image coordinate system origin is top left with positive x to the right and 
positive y down.

Proc. of SPIE Vol. 10296  1029609-19



190 / Critical Reviews Vol. CR74

Table 1 Algorithms for image matching
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supports

Differential
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Sub -image
intensity
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Binary edges,
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Hausdorff
Distance

Similarity
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Search
Strategy

Compute transform parameters
By optimization

Compute transform parameters
by optimization

Methods
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8. Conclusion

We have analyzed the problematic in the real world visible/IR image
registration with the image sequences from well separated spectral bands. After a
preprocessing with the Laplacian pyramid the area -based approaches may be still
applied. However, multiscale extraction of structural edges followed by feature
matching using the Hausdorff distance measures are more powerful to process very poor
quality IR images.

Because the common features extracted from images of two modalities can be
still different in detail, the transformation space match methods with the Hausdorff
distance measures were used which are more suitable than the direct feature matching
methods for dealing with outliers in the extracted fature sets. We have introduced image
quadtree partition technique to the Hausdorff distance matching, that dramatically
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reduces the size of the search space into that of the search for translations which
minimize the Hausdorff distance between corresponding blocks.

We have shown image registration of visible /IR real world images of battle
fields. The key point is to extract salient features from the real world images using local,
regional and global information. Mulitsensor image registration and fusion is one
realization of advanced computer vision systems. Multiple sensors, multiple spectra and
color cameras, 3 -D perspective projection image formation and time video image
sequences are widely used in the advanced computer vision systems.

Cross correlation is one of the basic operations used in image registration
algorithms for determining candidate point matches. The invariance to image rotation,
scale and view angle changes is an important issue for feature matching. Table 1 gives a
list and comparison of four algorithms described and implemented in this paper. High
speed optical correlator could be useful as an efficient hardware for implementation of
image registration algorithms, and the optimal correlation filter designs could enhance
the performance of the image processing systems. However, most optical processing
hardware have the lack of flexibility. The optical correlator should be integrated into the
numerical systems, such that powerful robust algorithms can be used to processing the
correlation output data and to remove the ambiguity of the correlation and threshoulding
outputs.
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