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ABSTRACT 
In the first part of the present contribution, we will report on transport calculations of nanoscaled devices based 

on Carbon Nanotubes obtained via self-consistent density-functional method coupled with non-equilibrium Green's 
function approaches. In particular, density functional tight-binding techniques are very promising due to their intrinsic 
efficiency. This scheme allows treatment of systems comprising a large number of atoms and enables the computation 
of the current  flowing between two or more contacts in a fully self-consistent manner with the open boundary 
conditions that naturally arise in transport problems. We will give a description of this methodology and application to 
field effect transistor based on Carbon nanotubes.  

The advances in manufacturing technology  are allowing new opportunities even for vacuum electron devices 
producing radio-frequency radiation. Modern micro and nano-technologies can overcome the typical severe limitations 
of vacuum tube devices. As an example, Carbon Nanotubes used as cold emitters in micron-scaled triodes allow for 
frequency generation up to THz region. The purpose of the  second part of this contribution will be a description of the 
modelling of Carbon Nanotube based vacuum devices such as triodes. We will present the calculation of  important 
figures of merit and possible realizations.   
 
Keywords: Carbon Nanotubes, Non-equilibrium Green Functions, Density Functional Theory, Quantum Transport, 
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INTRODUCTION 
Technological advances in fabrication, characterization and control at the nanoscale level have enabled the 

manufacturing of a variety of new organic-inorganic nanostructured devices with a good degree of reproducibility. Such 
a new class of devices requires new simulation approaches, since the inherent quantum-mechanical physics involved 
must be treated properly and the exact nature of the transport mechanisms in many of such systems still remains open. 
Carbon nanotubes have been recently acknowledged as promising candidates, among several low-dimensional 
physical systems, to realize nanoscale electronic devices [3], [4]. In particular, single-wall CNTs, consisting of a single 
graphene sheet wrapped up to form tubes with very small diameters, are ideal candidates to study general transport 
properties of quasi-one dimensional devices. CNTs posses exceptional electrical and mechanical properties, such as an 
exceptional strength and stability, which generate in turn the capability of carrying very high current densities [5]; very 
large values of the mean free path have been found, which guarantee carriers to propagate ballistically over very long 
distances even at room temperature (~ 1 µm in the low field regime) [6]. A CNT can be either metallic or 
semiconducting, depending on its chirality. Metallic CNTs can be employed as good interconnections among electrical 
devices at the nanoscale. Semiconducting CNTs have been instead used to demonstrate field-effect transistors having 
quasi-one dimensional channels [7]. 
The simplest approach to realize a nanotube transistor consists of contacting a semiconducting nanotube with two 
metallic contacts acting as source and drain. A gate modulates the injection of carriers in the nanotube channel by 
modulating the barrier height at the metal-semiconductor interface. A Schottky barrier (SB) nanotube transistor results 
in this case [8]. Significant progresses have been made in the fabrication and the understanding of these kind of devices. 
A SB-CNT transistor is essentially governed by a contactdominated switching. This is the fundamental difference with 
respect to conventional MOSFET devices, governed by conductance modulation of the channel. Indeed, SB-modulation 
strongly affects the performances of the nanotube device. The contact-dominated control mechanism leads to a large 
sub-threshold swing S = dVG/d(logIDS) (where VG and IDS are respectively the gate voltage and the source-drain 
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current), substantially limiting the gate insulator thinning, since a strong ambipolar behavior appears when the device is 
vertically scaled [8], [9], [10]. These drawbacks can prevent nanotube transistors from holding particular promises for 
highperformance nano-electronics. 
Recently, novel device configurations for bulk-switched CNTFETs have been proposed and demonstrated [1], [2]. To 
obtain a channel-dominated behavior, a local gate contact is realized in the middle point of the channel, strongly 
reducing electrostatic coupling with the source and drain contacts [11]. 
The height of the contacts barrier simply fixes the charge injected in the channel, regardless the value set for the gate 
bias. The carrier injection can be controlled either by electrostatic or chemical doping of the ungated portion of the 
nanotube [2]. This device scheme allows to greatly improve the nanotube transistor performances. A transition from 
ambipolar to unipolar behavior has been demonstrated. Moreover, measured devices have shown a very small sub-
threshold swing, very close to the theoretical limit found for standard MOSFET, and an excellent Ion/Ioff ratio. 
Nevertheless, important issues need still to be addressed for the bulk-switched CNTFET. The conductance modulation 
mechanism involved in the device behavior is obtained by locally modulating the barrier height for carrier transmission 
through the nanotube. Consequently, local screening properties of the quasi-one dimensional electron gas associated to 
the nanotube can assume a predominant role in the switching mechanism. 
 
Beside electronic applications, CNT can been very useful as field emitter even for  THz sources. THz technology and 
applications have long been the field of molecular astronomers and chemical spectroscopists. However, recent advances 
in THz detectors and sources have started to open the field to new applications, including measurement systems, 
biological and medical applications, material characterisation and security.  
The most difficult component to realize in the submillimeter wave bands has been the THz source. The submillimeter 
and terahertz regions are areas where electron mobility in semiconductors cannot meet the specifications. These 
specification, however, can be achieved with  electrons travelling in vacuum, assuming the electric and magnetic fields 
can be shaped to modulate the beams and convert their energy to RF power. 
Vacuum device technology is well established for obtaining high output power up to millimeter wave frequency. 
Conventional vacuum tubes include thermionic cathodes for generating an electron beam of adequate characteristics 
operating at high temperature (800 OC-1200OC). 
The introduction of FEA (field emission array) cathode offers significant advantage for THz frequency amplification. 
Further, FEA works at room temperature. A proposed FEA configuration for RF sources was developed by Charles 
Spindt et al. at SRI International and is referred to as the Spindt Cathode [12]. The Spindt structure can be improved by 
considering carbon nanotubes (CNTs) as cold cathode emitters. CNTs are ideal field emitters in a Spindt-type device, so 
many efforts have been spent worldwide in studying their field emission properties [13][14]. The recent advances in 
micromachining technique, in the etching process and the availability of aligned CNTs permit the realization of devices 
with reduced dimension and frequency operating range in the field of the THz. The great challenge of realizing devices 
whose dimensions are in the 1-100 µm range requires deep knowledge of their electrical behavior and physics 
 

CHARGE TRANSPORT THEORY 
 
Quantum charge transport results presented in this work have been obtained by using the quantum transport simulator 
gDFTB [15]. In the gDFTB formalism, the self-consistent Green’s functions scheme is implemented on a DFT-based 
tight-binding framework. The density-functional Hamiltonian matrix elements are evaluated starting from the Slater-
Koster two center approximation [16]. These elements, represented on a suitable nonorthogonal atomic-like basis set, 
are obtained by first principle computations as a function of atomic distance and are stored. Starting from this 
parametrization, the matrix elements for the actual system to be simulated are simply obtained by interpolation. This 
approach combines an ab initio accuracy with a highly efficient computational method. 
The self-consistent charge density approach of gDFTB is based on the expansion [17] of the electronic charge density of 
the system as n(r) = n0(r) + δn(r), where n0(r) is a reference density (which is chosen as the density associated to the 
neutrality condition, i.e., when no charge transfer occurs among the atoms of the system), and δn(r) is a superimposed 
density variation which takes into account the local charge transfer induced by chemical bonding and eventual external 
fields. Starting from the expansion of the total charge density, the Kohn-Sham energy functional can be expanded up to 
second order in the density variation δn(r) [17], obtaining  
 

( )[ ] ( )[ ] ( ) ( )[ ]'20 rrrr nnEnEnE δδ ⋅+= ,         (1) 
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where E0 represents the zeroth-order contribution, just determined by n0(r), and E2 represents the second-order 
correction to the total energy due to the charge density variation. 
Applying the variational principle to the energy functional (1), it is possible to obtain [17] a modified Hamiltonian for 
the Kohn-Sham equations, whose matrix representation on the tight-binding electronic states of the system is 
 

,10
µνµνµν HHH +=           (2) 

 
where H1

 is the correction-shift to the standard zeroth-order Hamiltonian H0
 . H0

  is the reference Hamiltonian of the 
neutral system, and represents the starting point of the selfconsistent cycle. The shift H1

  is instead evaluated at each step 
of the self-consistent procedure, and is a linear function of the first-order correction δn(r) to the total charge density 
[18]. The exchange and correlation (XC) contributions to the total energy are considered in a local density 
approximation (LDA), and are included in H1

 as on-site Hubbard energies [17]. Details of this DFT-based approach and 
its successful applications to a large variety of organic and inorganic systems have been extensively given elsewhere 
[19]. Indeed, to properly treat the self-consistent quantum transport problem, we need to calculate the charge density 
variation δn(r) starting from the Hamiltonian in Eq. 2 and taking into account the non-equilibrium carriers distribution 
generated by the application of a bias. The Non-Equilibrium Green Functions (NEGF) technique is used to this aim. 
To apply this formalism, the CNT has to be divided into two semi-infinite reservoirs which act as source and drain 
contacts, and a central region which scatters the propagating electronic states incoming from the two reservoirs. 
The occupation of the non-equilibrium scattering states of the system is completely resolved by knowing the density 
matrix ρµν . In the NEGF formalism, this fundamental quantity can be obtained starting just from the non-equilibrium 
Green’s function of the system, G<, as [20] 
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We evaluate this integral by using standard methods proposed in the literature [21]. Technical details more specific to 
our approach can be found in Ref. [18]. Here we only limit ourselves to give some details on G<, in order to give an 
intuitive insight in the physical meaning of the formalism. In its most general formulation, the steady-state non-
equilibrium Green’s function of the system is given by the Keldish- Kadanoff-Baym (KKB) equation [22], [23], [24], 
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is the standard, equilibrium, retarded (advanced) Green’s function of the system, and Σ< is the non-equilibrium self-
energy . The quantities which appear in the expression of GR(A) are the 
Hamiltonian matrix H, just given by Eq. 2, the overlap matrix S, resulting from the choice of a non-orthogonal tight-
binding basis set, and ΣR(A) the self-energies for each of the M contacts of the device, describing the coupling of the 
device with the M semiinfinite reservoirs. Scattering sources, such as electron-phonon or electron-electron interaction, 
can be included in the general expression of Σ<

 to describe incoherent transport. The method we use in this work is 
restricted to the description of coherent transport mechanisms. In this case, Σ<

 is determined only by the coupling of the 
device with the two semi-infinite contacts, and results to be 
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The electronic states of the semi-infinite reservoir i are filled according to the Fermi distribution function fi. 
The total charge density variation δn(r) needed for the selfconsistent computation of the Hamiltonian can be expressed 
as a superposition of atom-centered charge fluctuations, δn(r) = Σi δnI(r), which, in turn, are approximated by retaining 
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only the monopole terms δni(r) ≈ ∆qi ni(r). The atom-centered spherical cahrge densities, ni(r), are s-like orbital 
function with exponential decay [17], and ∆qi is the variation in number of electrons for the ith atom. The key step of the 
self-consistent computation is just the evaluation of ∆qi. This quantity is obtained starting from the non-equilibrium 
density matrix ρ, via the Mulliken charge analysis [17] 
 

[ ] ,Re 0∑∑
∈

−=
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ii qS
µ ν

µνµνρρ           (6) 

 
where Sµν are the elements of the overlap matrix and q0

 are the atomic charge of the neutral atoms. 
 
The correction to the TB Hamiltonian can be written as H1

µν = Sµ,ν (Vi + Vj)/2, where the on-site shifts, Vi, are 
calculated from the electrostatic potential V (r) using the projection Vi =∫V (r)ni(r)dr. The self-consistent electrostatic 
potential V (r) is in turn obtained by solving a three dimensional Poisson equation in real space using a multigrid 
algorithm: 
 

( ) ( )[ ] ( ),4 ∑∆−=∇⋅∇
i

iinqV rrr πε             (7) 

To correctly take into account the applied bias, Dirichlet boundary conditions are used on the Poisson calculation box 
correspondingly to the semi-infinite contacts. 
To summarize, our overall procedure consists in solving self-consistently the set of equations (2-4) coupled with the 
Poisson equation (7), until the computed atomic charge does not vary within a specified tolerance. 
The current flowing in the system can also be computed starting from G and Σ.  
 

( ) ( ) ( ) ( )[ ] ,dEEGEEGETr
h
eI iii

<>>< Σ−Σ= ∫           (8) 

The expression for the coherent contribution to the current just recovers the usual expression obtained in Landauer 
formulation [20] 
 
 

SIMULATION OF FIELD EFFECT TRANSISTORS BASED ON CARBON NANOTUBES 
 
Here we focus our attention on the theoretical description which can be given of bulk-modulated, CNT-based field-
effect transistors (CNTFETs) by means of the gDFTB approach. The physical mechanisms governing transport in these 
devices, starting from the role played by one-dimensional screening on gate- and drain-induced current modulation, can 
be correctly predicted at an atomistic level within our approach. 
The system we have simulated is shown in Fig. 1. It consists of an infinite, semiconducting CNT (7,0), having a 
diameter of 5.52 Å and an energy gap 1.3gE =  eV. The nanotube is coaxially gated by a metallic cylindric contact 
centered in the middle point of the channel. The gate length is 1.2 nm. An insulator layer with dielectric constant 

3.9rε =  and a thickness of 0.8 nm surrounds the CNT. 

  
Figure 1:  Schematic cross section of the coaxially gated CNTFET we have simulated.  
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Details on the interface between the source-drain metallic contacts and the semiconducting nanotube are not necessary 
in order to describe bulk-switching mechanisms, which consist of a local gate-field modulation with no electrostatic 
coupling with the metallic contact structures. 
To simulate charge injection in the intrinsic channel, we simply dope the two ending portions of the nanotube by 
varying the number of valence electrons per carbon atoms [25]. Calculations have been performed retaining only the pz-
orbital part of the Hamiltonian. This is sufficient to accurately describe the first conduction and valence bands of the 
CNT (7,0).  
 
In bulk-modulated CNTFETs, current modulation depends on the channel capability to screen the local gate field, that 
is, on the amount and the distribution of charge that can be locally induced on the CNT by the applied gate bias. Owing 
to their very small, one-dimensional density of states (DOS), nanotubes are generally not able to completely screen the 
gate field in the small extension of the electron gas associated to the graphene sheet. 
In this situation, the channel charge response for a given gate bias can no longer be described by using only the 
geometrical capacitance of the insulator. On the contrary, a correction should be brought to the insulator capacitance to 
account for the correct value of the induced charge. This correction is obtained by means of the so called quantum 
capacitance [26]. The total capacitance of the gated nanotube system, CQ, is given by the series connection of the 
geometric and the quantum capacitances [27], respectively Cins  and CQ  as 1/ 1/ 1/G ins QC C C= + . A correct evaluation 
of the quantum capacitance is fundamental in order to correctly describe the charge response (and consequently the 
barrier height modulation properties) of a bulk-modulated CNTFET. The gDFTB approach naturally includes the 
treatment of the quantum capacitance, since the charge induced on the nanotube is computed self-consistently with the 
gate electrostatics. Furthermore, by using an atomistic, DFT-based approach, the computed charge takes into account 
the DOS of the one-dimensional system and retains, at least within a mean-field approximation, some of the electron-
electron exchange and correlation effects on the nanotube screening properties. The importance of many-body 
corrections to the quantum capacitance of a gated nanotube has been recently pointed out in Ref. [28] and [29]. In large 
diameter tubes, where the contribution of the exchange interaction to the total energy is negligible, the quantum 
capacitance can be estimated simply from the DOS as ( )2

0
DOS
Q FC e L= ρ ε . For small diameter tubes, due to the 

predominance of the exchange interaction over the kinetic energy, the quantum capacitance can instead be very different 
from the DOS-proportional result, and can even assume negative values. From a physical point of view, this means that 
the nanotube, owing to the predominance of the attractive exchange interaction among electrons, can accumulate even 
more charge than what strictly needed to totally screen the gate field, giving rise to a small over-screening of the gate 
potential in its interior. 

  
Figure 2:  Computed inverse quantum capacitance of the coaxially gated CNT (7,0) as a function of the Fermi level inside the first 
valence subband. Solid line refers to DFT calculations. Dashed line refers to 2

0 ( )Q FC e E= ρ . 
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In Fig. 2 we report the computed inverse quantum capacitance of a uniformly p-doped CNT (7,0) as a function of the 
Fermi energy inside the first CNT valence subband. Each value of the Fermi energy univocally corresponds to a given 
p-doping fraction. These results have been obtained following the methodology presented in Ref. [28], and refer to an 
insulator capacitance Cins=0.28 aF. Solid line refers to the DFT atomistic computation, while dashed line is 
representative of the DOS-limited, non-interacting result. The nanotube over-screens the external gate field in the whole 
range of holes densities we have explored, and no positive values of the quantum capacitance have been obtained. 
 
In Fig. 3 we show the calculated output characteristics for a p-i-p CNTFET. The intrinsic channel of the simulated 
nanotube is 10.26 nm long. Source and drain contacts are p-doped with a carrier concentration of 2.63⋅106 cm-1, 
corresponding to a doping fraction f=0.004 holes per carbon atom. In realistic devices, this carrier concentration can be 
easily obtained by an electrostatic doping, controlled by means of a back gate contact [2]. This doping causes the 
nanotube Fermi level to be shifted inside the first valence subband, at ∼16 meV below the subband edge. Charge 
transfer at the junction between the degenerate p-type and the intrinsic portion of nanotube generates a barrier for holes 
transmission in valence band. The different curves shown in Fig. 3 refer to different gate biases. Positive potentials 
applied to the gate contact increase the barrier height for holes transmission, hence reducing the current for a given drain 
voltage.  

                             
Figure 3:  Computed output characteristics of the p-i-p CNTFET. Different curves correspond to different gate potentials. The inset 
shows details of the first two operative regimes of the device, the linear regime and the carrier injection saturation. The corresponding 
band profiles are shown in right panel.  

 
The physical mechanisms governing the current dependence on the applied source-drain bias can be understood 
referring to the band profiles shown in Fig. 3 (right). These band profiles have been obtained, for a fixed gate potential, 
by varying the drain-source applied bias, DSV , in a range of negative values (as required for a p-type conduction 
device). 
The current is determined by the holes transmission probability in the energy interval between the Fermi levels of the 
source and drain contact. Although the applied bias continuously shifts the drain Fermi level with respect to the source, 
the nanotube bandgap reduces the energy window for hole injection to the energy interval injE∆ , between the source 
valence band edge and the source Fermi level (see Fig. 3). In other words, the maximum holes injection in the channel is 
fixed by the source doping rate. 
At first, current linearly increases as a function of the applied bias, simply due to the increasing of the energy window 
for carrier injection between the source and drain Fermi levels. As the maximum energy window for carrier injection is 
reached, corresponding to the bias ,| | /DS inj injV E e= ∆  (see also the inset of Fig. 3), the current does not completely 
saturate due to a drain-induced modulation of the barrier width within the fixed injection interval, which considerably 
increases the holes transmission probability. It should be kept in mind that the fundamental reason for the behavior we 
observe is that the device operates in such a regime that current is entirely due to tunneling through the potential barrier. 
In purely ballistic devices, it is just the barrier height which determines the device behavior. On the contrary, in 
tunneling regimes, also the barrier width and shape are relevant in determining the current. In the p-i-p structure we 
have simulated, the contact Fermi level lies closely to the valence subband edge, well below the top of the potential 

Proc. of SPIE Vol. 6328  632808-6



1 e-06

Ie-08

le-14

VGS

 

 

barrier for hole transmission (see Fig. 3). This is not totally unexpected for a small-diameter nanotube junction, where 
charge transfer occurring at the doped-intrinsic interface is distributed over an exiguous number of carbon atoms, owing 
to the marked quasi-one dimensionality of the system. A large shift in the atomic energy can therefore results also from 
a relatively small charge transfer, causing a very high potential barrier with respect to carrier injection level. This deeply 
differentiates the behavior of a CNTFET with respect to the ballistic transport theory developed for silicon nano-
MOSFET [30]. The strong dependence of the saturation current on the drain bias we have so far observed, is just caused 
by the exponential dependence of the tunneling current on the width of the barrier. We can refer to the mechanism 
responsible for the non-saturation of the current as drain-induced barrier thinning (DIBT).  
Finally, it should be noted that the short length of the channel enhances the sensitivity of the tunneling current to drain-
induced barrier modulation. Longer nanotubes are therefore expected to show a considerably lesser sensitivity of the 
saturation current to the drain bias. In Fig. 4 we show the trans-characteristic obtained for the p-i-p CNTFET for a fixed 
drain bias of -0.4 V. 
Simulation results show the exceptional transport characteristics of bulk-modulated CNTFETs. Firstly, we note that the 
device shows a perfectly unipolar behavior. Current is carried only by holes which are injected from the p-doped source 
contact, and is progressively switched-off by increasing the barrier for holes transmission with the gate bias. The non-
monotonic behavior that can be observed in the trans-characteristic when a high gate voltage is applied is associated to 
band-to-band (BTB) tunneling mechanisms, which allows holes to propagate from the valence subband of source 
contact into the conduction band in the middle of the channel, and then to be collected into the valence subband of the 
drain [31] (see the inset in Fig. 4). Thanks to their intrinsic unipolar behavior, vertically scaled CNTFETs accomplish 
one of the fundamental requirements for a high-performance device which can be used in CMOS-like logic circuits. 
The computed output-characteristics show also a very high /on offI I  ratio, ∼108, which is evidence of the exceptional 
effectiveness of the bulk-switching mechanism in modulating the current. Exceptional performances have also been 
obtained concerning the sub-threshold swing parameter, / ( )G DSS dV d logI= , which measures the effectiveness of the 
gate bias in switching off the current in the sub-threshold regime. The computed output characteristic shows a very good 
value for the inverse sub-threshold slope, 75 mV/dec. Note that the BTB branch of the characteristic in Fig. 4 shows a 
sub-threshold swing of 42 mV/dec, which is even lower than the minimum value attainable for any conventional silicon 
MOSFET at room temperature, which is (10) / 60BK Tln e =  mV/dec. 
 

 

  
Figure 4:  Trans-characteristic of a p-i-p CNTFET consisting of the semiconducting CNT (7,0) doped at the contacts with 0.004 holes 
per carbon atom. The non-monotonic behavior of the current for high gate voltages is associated to band-to-band tunneling.  
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FIELD EMISSION OF CNT 
 
The gDFTB method can be applied to determine the charge density profile in the CNT used as field emitter. In the 
following we consider a CNT cathode in a diode configuration. Here we do not calculated the field emitted current but 
only the influence of the electric field on the charge density of the CNT. Also in this case, the Green approach is 
important since it allows for a proper account of boundary conditions (semi-infinite CNT).  
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Figure 5:  Charge density profile (with respect to equilibrium density) and potential profile of a (6,6) capped CNT field emitters.  

 
Figure 5 shows both the charge profile and the potential profile for a (6,6) capped CNT with an anode potential of 1.0V 
Here the CNT is the cathode and the anode is 2 nm above the CNT tip. Charge oscillations in the CNT, induced by the 
electric field, extends over the first 4 nm of the CNT tip. Those oscillations, however, have little influence on the 
potential profile shown in the right side of Fig. 5   
 
 

MODELLING OF THZ SOURCES BASED ON CNTS. 
 
Triode RF amplifier structure based on CNT has been simulated by using a particle-in-cell technique coupled to a 
Electromagnetic simulator [32]. CNT is assumed as a cylinder with a cap of 10nm radius and 1µm in height. The triode 
structure is based on a typical Spindt-type field emitter triode (Fig. 6). An anode plate is located 1µm away from the 
CNT. Other simulation parameters are: anode-gate distance, dag=0.9µm; gate radius, rg=160nm; gate thickness, 
tg=0.1µm. The emission process is modeled by the Fowler-Nordheim equation, where CNT’s work function value is 
fixed at 4.8eV [33, 34]. 
The dc characteristic is obtained, observing the anode current (Ia) as a function of gate voltage (Vg) and anode voltage 
(Va). The results agree with the experimental data shown in [32, 35].  
The anode current as a function of anode voltage is shown in fig. 7. 
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As well known, the gate electrode influences the modulation and the focalization of the electronic beam. Although a 
negative gate voltage of −5V is applied, an anode current is observed. In this case, the gate electrode doesn’t intercept 
the emitted current that travels towards the anode. If the gate voltage is positive, the beam is less focalized; so the gate 
can collect a fraction of the emitted electrons.  
The presence of  this leakage current quantifies the transparency coefficient, an important triode parameter, expressed 
as: T=IA/Iemiss, where Iemiss is the emission current from the nanotube’s tip. Fig. 8 shows the results for the transparency 
coefficient as function of gate voltage for well aligned CNT.  

         
 
 
 
Transparency is 100% for low voltage gate while, for high positive gate voltage, the transparency is only reduced to 
97.5%. The misalignment (a) between the centre of the nanotube and the centre of the gate hole is also studied. 
Simulations were done for different gate voltages, with a fixed anode voltage of 800V and gate hole radius of 160nm. 
Fig. 9 shows variations of the transparency coefficient as a function of three different values of misalignment parameter 
a. It can be observed no significant variation of the transparency coefficient for moderate misalignment values, while a 
relevant degradation of the transparency is observed for large misalignment. This is due to a larger part of emitted 
current intercepted by the grid and, therefore, to an increase of the leakage current. 
The frequency behavior of the field emission triode with one centered CNT is plotted in Fig. 10 showing  the simulated 
ac current gain (triode is biased at Va = 800V, Vg=80V ). The field emission triode presents a low-pass filter behavior 
and the cut-off frequency fβ of 37 THz. 
 
 

Fig 6. Equivalent circuit of the CNT triode [36] 
Fig 7. Output characteristics of the CNT triode 

 
Fig. 8. Trans-characteristics of the CNT-triode 
and transparency  

Fig. 9. Transparency as a function of CNT 
position 
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In conclusion a vacuum triode has been presented and simulated. The discussion on the principal merit factors (leakage 
current, transparency and cut-off frequency)  demonstrate the ability of the devices to be used in the THz frequency 
applications[37]. 
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