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ABSTRACT 

In this paper we overview the nonlinear matched filtering for photon counting recognition with 3D passive sensing. The 
first and second order statistical properties of the nonlinear matched filtering can improve the recognition performance 
compared to the linear matched filtering. Automatic target reconstruction and recognition are addressed for partially 
occluded objects. The recognition performance is shown to be improved significantly in the reconstruction space. The 
discrimination capability is analyzed in terms of Fisher ratio (FR) and receiver operating characteristic (ROC) curves. 
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1. INTRODUCTION 
Automatic target recognition (ATR) with a photon counting detector has been researched in [1, 2]. Recently, nonlinear 
matched filtering and photon counting linear discriminant analysis have been proposed in [3] and [4], respectively. 
Photon counting recognition with computational integral imaging has been proposed for the partially occluded objects 
[5]. In this overview paper, we present the pattern recognition system based on Ref. 3 and Ref. 5. The robustness of the 
nonlinear matched filtering is in that the mean of the filtered output is constant varying the number of photons and the 
variance is proportional to the inverse of the average photon counts. For occluded objects, photon counting recognition 
system measures nonlinear correlation between reconstructed scenes of a reference target and estimated photon-counting 
scenes of unknown objects in 3D space. We reconstruct sectional images at arbitrary depths using computational integral 
imaging (II) method. The Poisson parameters of the photon counts on the reconstruction plane are estimated by 
maximum likelihood estimation (MLE). The first and second order statistical properties of the nonlinear matched 
filtering in 3D space are the same with the ordinary nonlinear matched filtering which is performed on the image plane. 
The performance of the recognition system is evaluated in terms of Fisher ratios and ROC curves. 

The organization of the paper is as follows. In Section 2, we provide the reconstruction methods for irradiance scenes 
and photon counting scenes. The photon counting nonlinear matched filtering is reviewed in Section 3. Photon counting 
images are simulated from captured irradiance scenes. In Section 4, these simulated images are used to compute the 
performances of the nonlinear matched filtering. Summary follows in Section 5. 

2. COMPUTATIONAL RECONSTRUCTION OF INTEGRAL IMAGING 
In this paper, II recording system is composed of a micro-lens array, an imaging lens, and a CCD (charge-coupled 
device) array camera [3-6]. A number of small convex lenses in the lens array capture elemental images where the 
captured ray information appears as a two-dimensional (2D) image with different perspectives. In the computational 
reconstruction of II, each elemental image is projected through a corresponding virtual pinhole to the reconstruction 
plane with arbitrary depths [6]. The recognition of occluded objects has been researched using integral imaging in [7]. 
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Fig. 1. II computational reconstruction model 

Suppose that a point A in Fig. 1 is located at ],,[ AAA zji  on the 3D object surface. The power density at the point A is 
denoted as xA. Let xn be the captured irradiance corresponding to the point A on the imaging plane of the n-th micro-lens. 
The points are located at ],,[ Ann gji , n=1,…,NA and assumed to have a unit area, on is the center of the n-th micro-lens. 
Under the assumption that the distance zA between the point A and the micro-lens array is large enough, the same power 
is transferred from xA and collected as 

ANxx ,...,1 , thus, the scale factors between xA and xn, n=1,…,NA  are 
approximately the same. Therefore, xA can be estimated to be the average of xn with a unit scale factor: 
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When the fluctuations in irradiance are assumed to be small compared to the fluctuations produced by the quantized 
nature of the radiation, we consider the Poisson distribution for the photon counting model [8]. The Poisson parameter 
for the photon-counts is assumed to be proportional to the irradiance on the detector. Therefore, the probability of photon 
count at pixel i is given by 
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where y(i) is the number of photons detected at pixel i, NP is an expected number of photon-counts in the scene, x(i) is 
irradiance at pixel i, NT is the total number of pixels in the scene. Let yn, n=1,…,NA be the photon counts detected with 
the parameter λn which is associated with xn. Let us consider λA which is associated with xA. With the assumption that 

ANxx ,...,1  are measurements of xA, 
ANλλ ,...,1

are also originated from λn. Therefore, the joint probability density 
function of photon counts is calculated as 
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Thus, λA is estimated by the MLE (maximum likelihood estimation) [9] as 
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3. NONLINEAR MATCHED FILTERING FOR PHOTON COUNTING RECOGNITION 
For the recognition of photon counting scenes, the nonlinear matched filtering has been proposed as the nonlinear 
correlation normalized with the power v of the photon-counting image [3]: 
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where xr(i) is the irradiance at pixel i of the reference target r, and ys(i) is the photon counts at pixel i of the unknown 
object s. The first and second order statistical properties of Eq. (6) is that the mean of Crs(1) is constant and the variance 
is approximately proportional to 1/NP [3]. 

The nonlinear matched filtering in the reconstruction space has been proposed as follows [5] 
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where );(ˆ dr zix  is the reconstructed irradiance information of the reference target at the depth zd [See Eq. (1)], i denotes 
a virtual voxel on the reconstruction plane Ωd, thus, voxels on the plane Ωd have the same longitudinal distance zd from 
the micro-lens array, );(ˆ

ds ziλ is the estimated Poisson parameter on the reconstruction plane Ωd for the unknown input 
target [See Eq. (5)]. Since we have no prior information of the object location, the entire reconstruction space Ωd, 
d=1,…,Nd, is considered where Nd is the total number of depth levels which possibly cover the unknown object. The 
nonlinearity decided by v in the denominator in Eq. (7) have the same first and second order statistical properties with 
those of Eq. (6) since )(ˆ ixr and )(ˆ isλ  are the linear combination of the irradiance and the photon counts in the 
elemental images. 

4. EXPERIMENTAL AND SIMULATION RESULTS 
In this section, we present the experimental and simulation results of the photon counting recognition using nonlinear 
matched filtering on the image plane and in the reconstruction space. 

4.1. Nonlinear matched filtering on the image plane 

A micro-lens array and a pick-up camera are used to record elemental images. The pitch of each micro-lens is 1.09 mm, 
and the focal length of each micro-lens is about 3 mm. Three sets of elemental images have been obtained from three toy 
cars [3]. The size of each car is about 4.5 cm × 2.5 cm × 2.5 cm. The size of one elemental image array is 1600×1334 
pixels. We simulate 1000 photon-limited images, each with a random number of photons following the Poisson 
distribution. Figure 2(a) shows the reference target and figures 2(b) and 2(c) are the false-class targets.  

   
(a)           (b)                   (c) 

Fig. 2. Elemental images for (a) a reference target, car 1, (b) a false class target, car 2, (c) a false-class target, car 3. 

Figure 3(a) shows the sample mean of correlation coefficients and the sample standard deviation when v=1 with 
theoretical prediction [3]. The red solid line graph represents the sample mean of autocorrelation between the irradiance 
image and photon counting images of car 1, and the blue dotted line and black dashed line graphs are the sample mean of 
cross-correlation between the irradiance image of car 1 and photon counting images of car 2 or car 3, respectively. Error 
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bars stand for rsrs σm ±  where rsm  and rsσ  are the sample mean and the sample standard deviation of the nonlinear 
matched filtering, respectively. Figure 3(b) shows the sample variance of Crs(0;1) with theoretical prediction [3]. The 
deviation from the theoretical prediction becomes larger as the number of photons decreases as shown in figure 3(b).  
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(a)       (b) 

Fig. 3. Mean and variance of Crs (0;1), (a) sample mean and theoretical prediction, (b) sample variance and theoretical 
prediction. 

Figures 4(a)-(d) show ROC curves corresponding to cars (r=1, s=2) and cars (r=1, s=3) for Crs (0;0) and Crs (0;1), 
respectively. Figures 4(b) and (d) show better performance than figures 4(a) and (c). 
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(a)    (b)   (c)    (d) 

Fig. 4. ROC curves when r = 1, (a) s = 2 for Crs(0;0), (b) s = 2 for Crs(0;1), (c) s = 3 for Crs(0;0), (d) s = 3 for Crs(0;1). 

 
4.2. Nonlinear matched filtering in the reconstruction space 

To simulate the partial occlusion, a tree model is placed between the toy car and the micro-lens array. Figure 5 shows the 
elemental images of the reference target, car 2 in this experiment and the partially occluded reference target and the 
false-class target, car 3 without occlusion. The size of one elemental image array is 1419×1161 pixels. Figure 6 show 
that the reconstructed sectional images in the 3D space for the partially occluded true-class target [See Fig. 5(b)].  

                      
(a)          (b)                     (c) 

Fig. 5. Elemental images for (a) the reference target, car 2 (b) the reference target, car 2 with partial occlusion, (c) the false-
class target, car 3. 
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(a)                 (b) 

Fig. 6. Reconstructed images of the partially occluded true-class target, (a) d = 40 mm, (b) d = 74 mm. 

One hundred photon counting images for each elemental image are generated to compute the means and variances of the 
nonlinear matched filtering. Figures 7(a) and 7(b) show the experimental results of nonlinear matched filtering for 
elemental images, that is without reconstruction [See Eq. (6)] and with reconstruction [See Eq. (7)], respectively. The red 
solid line graph represents the sample mean for the true class target with occlusion and the blue dotted line graph is the 
sample mean for the false class target. Nd in Eq. (7) is set at 1 where the depth of reconstruction plane is 74 mm. Figure 
8(a) shows the Fisher ratios. Fisher ratio decreases when a lower number of photo-counts is used. Figures 8(b) and 8(c) 
show the ROC curves when Np=500 and Np=100, respectively. It is shown that the recognition performance of the 
proposed technique is substantially improved compared to the nonlinear matched filtering without reconstruction. 
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(a)            (b) 

Fig. 7. Sample mean and error bars (standard deviation) for nonlinear matched filtering using (a) elemental images without 
reconstruction, (b) reconstructed scenes in 3D space. 
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(a)              (b)                           (c) 

Fig. 8. Comparison of recognition performance between elemental images and 3D reconstruction, (a) Fisher ratios, ROC 
curves when (b) Np=500, (c) Np=100. 

5. SUMMARY  
In this paper we overview the nonlinear matched filtering on the image plane and in the reconstruction space. The first 
and second order statistical properties of the nonlinear matched filtering are shown to provide better recognition 
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performance than the linear matched filter in terms of Fisher ratio and ROC curves. The computational II visualizes the 
occluded object by reconstructing sectional images in 3D space. Photon counting scenes are estimated using MLE of the 
Poisson parameters in 3D space. We have shown that the output of the nonlinear matched filtering in 3D space provides 
improved performance than the nonlinear matched filtering on the image plane for the partially occluded objects. 
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