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ABSTRACT 
 
Current imaging modalities allow precise visualization of tumors but do not enable quantitative characterization of the 
tumor metabolic state.  Such quantitative information would enhance our understanding of tumor progression and 
response to treatment, and to our overall understanding of tumor biology.  To address this problem, we have developed a 
wide-field functional imaging (WiFI) instrument which combines two optical imaging modalities, spatially modulated 
imaging (MI) and laser speckle imaging (LSI).   Our current WiFI imaging protocol consists of multispectral imaging in 
the near infrared (650-980 nm) spectrum, over a wide (7 cm x 5 cm) field of view.  Using MI, the spatially-resolved 
reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are estimated 
using a Monte Carlo model.  From the spatial maps of local absorption and reduced scattering coefficients,  tissue 
composition information is extracted in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage 
of lipid and water.  Using LSI, the reflectance of a 785 nm laser speckle pattern on the tissue is acquired and analyzed to 
compute maps of blood perfusion in the tissue. Tissue metabolism state is estimated from the values of blood perfusion, 
volume and oxygenation state.  We currently are employing the WiFI instrument to study tumor development in a 
BRCA1/p53 deficient mice breast tumor model.  The animals are monitored with WiFI during hyperoxic respiratory 
challenge.  At present, four tumors have been measured with WiFI, and preliminary data suggest that tumor metabolic 
changes during hyperoxic respiratory challenge can be determined. 
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1. INTRODUCTION 
 
Cells require readily available oxygen and nutrients, such as growth factors and amino acids, to survive. These 
components are delivered to cells by the blood via the microvasculature. Normal microvasculature is composed of 
mature vessels and maintained by pro- and anti-angiogenic molecules. Tumor microvasculature, by contrast, is 
structurally and functionally abnormal and is characterized by tortuous, dilated and saccular blood vessels that are poorly 
organized and have increased permeability.  This results in a vascular network that has spatial and temporal 
heterogeneity and greatly inhibits the delivery of oxygen and macromolecule nutrients.  Finally, poor oxygen delivery 
creates a hypoxic environment within the tumor.  These hallmark characteristics of solid tumors act in concert to limit 
the delivery and effectiveness of both cytotoxic and molecular targeted therapies1. 
 
Hyperoxic respiratory challenges have been applied to enhance the efficacy of cancer treatments such as radiotherapy by 
increasing tumor oxygenation2. Due to the abnormal state of tumor vasculature, tumors show a different response from 
normal tissue to respiratory challenges. In this study, we monitored changes in tumor hemodynamic parameters such as 
blood oxygenation, blood volume, and blood perfusion during oxygen gas intervention using a novel wide field 
functional imaging (WiFI) system.   
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changes in SFI values.  This observation bears further investigation as it potentially may provide insight into the 
relationship between blood perfusion and blood content. 
 
We have shown that our novel WiFI system has the potential to monitor tumor metabolic changes during hyperoxic 
respiratory challenge.  The information obtained from this study can potentially give further insight into relationships 
between blood perfusion and corresponding changes in tissue chromophore concentration.  Future work includes 
continuing these measurements on more tumors and determining the interplay between each of these tumor metabolic 
markers. 
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