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Abstract. We propose a new nonlinear matching measure for auto-
matic analysis of the on-off type DNA microarray images in which the
hybridized spots are detected by a template-matching method. The
proposed measure is obtained by binary thresholding over the entire
template region and taking the number of white pixels inside the spot-
ted area. This measure is compared with the normalized covariance
method in terms of classifying the ability to successfully locate mark-
ers. The proposed measure was evaluated for scanned images of hu-
man papillomavirus (HPV) DNA microarrays where locating markers
is a critical issue because of the small number of spots. The targeting
spots of HPV DNA chips are designed for genotyping twenty-two
types of the human papillomavirus. The proposed measure is proven
to give a more discriminative response, reducing the missed cases of
successful marker location. The locating accuracy of the proposed
method is also shown to have the same performance as that of the
normalized covariance. © 2004 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1691026]
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1 Introduction
The automatic analysis of microarray images is one of the
main issues for high-throughput screening using DNA mi-
croarrays. The analysis is commonly composed of two steps
one finds a spot position and the other measures the sign
amplitude of each spot.1,2 It is natural to utilize an ideal tem-
plate to find the position of spots because prior knowledge o
the microarray is available.1–5 The predetermined template is
tested for the best match over the hybridized image to locate
relative reference for the spot positions. This process can b
trivial for microarrays that have a relatively large number of
hybridized spots as in Refs. 1–4, 6, 7. However, it is not
always easy to find the spot position when the number o
spots is too small to obtain enough response for HPVDNA-
Chip ~Biomedlab Co., Korea!. Because this microarray con-
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tains only four marker spots that can be utilized for the ref
ence position, we need to choose the template match
measure carefully.

The HPVDNAChip is designed for the detection of hum
papillomavirus~HPV! infection, which is one of the main
causes of cervical cancer. Several groups reported on
clinical application and the evaluation of the HPVDNAChi
Kim et al.8 examined the use of the chip, comparing it wi
the well-established detection system HC-II~Hybrid Capture
II ! of Digene Co. In particular, they evaluated its clinical e
ficacy for detecting HPV in cervical neoplastic lesions in 1
specimens. The chip was highly comparable to HC-II a
provided useful information on viral genotype and multip
HPV infections in HPV-related cervical lesions. Cho et a9

performed a comparative study with Papanicolaou diagno
for 685 cervicovaginal swabs. HPV types 16, 18, and 58 w
confirmed to be major causative factors for cervical carcin

1083-3668/2004/$15.00 © 2004 SPIE
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Fig. 1 The architecture of an HPV DNA microarray.
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genesis, in descending order. An et al.10 performed HPV
genotyping in cervical specimens from 1983 patients and
compared their cytological and histological diagnoses. They
evaluated the quality of the HPVDNAChip method and iden-
tified HPV types related to cervical carcinoma and precancer
ous lesions. The chip provided a very sensitive method fo
detecting twenty-two HPV genotypes with reasonable sens
tivity ~96.0%! and a reasonable negative prediction value
~96.9%!, and it overcame the low sensitivity of cytological
screening for detection of high-grade squamous intraepithelia
lesions~HSIL! or carcinomas.

The HPVDNAChip has four chambers, one for each pa-
tient, as shown in Fig. 1. Each chamber is designed to hav
two identical sets of spots to increase the credibility of the
diagnosis. A set of spots has four markers and twenty-two
pairs of HPV type-specific oligonucleotide probes. The oligo-
nucleotide probe of one HPV type is dotted twice, creating a
pair of spots for the HPV type, and such probe pairs for
twenty-two different HPV types are employed. The markers
in each set, the oligonucleotide probe for humanb-globin, are
selected for the identification of probe positions as well as the
verification of the hybridization success.

The target DNA of the sample is amplified by a poly-
merase chain reaction~PCR! and hybridized onto the chip. It
randomly incorporates Cy5 during PCR amplification and vi-
sualizes the position of hybridization when the DNA chip is
scanned. The DNA chip is an on-off type that can be read by
simply finding the fluorescent spots with a scanner. The auto
matic analysis starts from scanning enough area to cover th
specified set of spots. The initial scanning area can be dete
mined from the accuracy of the arrayer and the scanner. How
ever, the exact position of a set should be searched by locatin
the markers, which are always visualized if the hybridization
is successful.

The template-matching method has been reported to giv
reasonable performance in locating markers for the on-of
type microarray.5 The normalized covariance measure works
well if the template-matching method is combined with prior
knowledge of the relative distances between marker spots
This is because the intrinsic local problem of the template
matching method can be overcome by utilizing the geometric
relationship of the patterns.11 However, it is not enough to
distinguish the success of locating markers with the normal
ized covariance. Since it is normalized, not by the signa
l

e
-
-
g

.

power, but by the mixture of the signal and noise, it deliver
smaller response for smaller signal amplitudes. In the me
time, experts tend to distinguish the hybridized spots by
distribution of white pixels rather than the absolute intens
of each pixel. They consider a spot hybridized if its area
filled with a certain amount of pixels whose intensities a
relatively higher than those of the background. The mec
nism seems to reduce the signal variation greatly because
pixel intensities are mapped onto the binary state.

In order to simulate an expert’s behavior, the templa
matching method should be analyzed. A template and a ta
image can be in binary or gray-valued forms according
applications. However, a binary template is usually employ
for detecting objects in gray-valued images because of
lack of information on image degradation in the imaging sy
tem and model.12 Therefore, it is natural to construct a com
posite binary template so that the pixel value is ‘‘1’’ in th
object area and ‘‘21’’ in the background. It is also reasonab
to make a template with the numbers of pixels equal in
object and the background. In that case, the covariance m
sure can be regarded as the mean difference of the inte
functions of the object and the background. This can be re
terpreted as the following two steps. First, the pixel intens
function of each area is mapped to its mean value. Next,
template-matching measure is the difference of the mean
ues.

We can deploy the matching measure to more clos
simulate the expert’s mechanism. Instead of choosing
mean value for the representative mapping of each area
can take any order statistics, assuming that only the o
relation of the intensity values is valid. This can be a ratio
choice when noise destroys the distance metric of the in
sity values. For example, the gray-scale hit-or-miss transfo
chooses the first-order statistics for the mapping as in Ref.
Even if the order does not seem to be preserved, we m
map the intensity values of the target image to the binary o
by a threshold. In this case, the covariance measure is
same as the hit-or-miss transform, where both the temp
and the target images are in the binary forms. Since it is a
not easy to optimize the threshold to accommodate the
and signal amplitude over the target image, this paper in
duces a heuristic reasoning. If the image area coincides
the template pattern, then all the bright pixels in the templ
region exist in the corresponding object area. From this
servation, we can select the threshold so that the numbe
the selected brighter pixels is same as that of the obje
pixels.

This paper introduces a matching measure based on
preceding discussion. The target image region correspon
to the template is grouped into bright and dark pixels throu
the thresholding strategy mentioned earlier. After thresho
ing, the difference between the numbers of brighter pixels
the object area and the background can serve as a simil
measure that will deliver the maximum value only if the tem
plate exactly overlaps the object.

The proposed measure is integrated with the same stra
as in Ref. 5 to compare with the normalized covariance. T
performance of both measures is evaluated for 1230 scan
microarray images of 615 patients, two images per patie
The analysis is focused on the criterion for failure to loca
markers. The details of the proposed matching measure
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 433
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Fig. 2 (a) An example of a scanned image of a set in a chamber. (b)
and (c) Enlarged images of the spots. (d) The proposed template.
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described in Sec. 2, which also covers the marker locatin
strategy and the normalized covariance measure. In Sec.
both measures are compared; we give the conclusion and th
discussion in the last section.

2 Locating Markers by Template Matching
Figure 2 shows a scanned image of a set in a chamber and t
enlarged images of the spots. Figure 2~a! shows an image that
is taken by scanning one of the predefined areas in a slide th
are specified to cover each set of spots. The spots should b
searched for because their positions are not guaranteed to
fixed in terms of image coordinates by the production of the
microarrays. Figures 2~b! and 2~c! are enlarged views of some
spots in image 2~a!. The hybridized spot pattern might not
simulate the square shape of the dotting pin shown in Fig
2~d!. Neither the average nor the distribution of intensity in
the spot area is regular. Even though there might be sever
causes of these kinds of artifacts, the simple template show
in Fig. 2~d! might be reasonable because a strict model of the
spot pattern is not currently available. The template intensity
profile can be an average of a group of expert-selected spo
image patches as in Ref. 1 or a Gaussian function to accom
modate the unknown spot size as in Ref. 2. However a un
function is proven to be enough for our application. Therefore
we set the template intensity profile as follows. The intensity
is 1 in the spot area~the white box! and21 in the background
area~the dashed region!. The size of the background is set to
be the same as that of the spot area to unbias the matchin
response where any hybridized spot does not exist.

We can use two additional ways to locate markers othe
than the size or shape of spots, as mentioned in Sec. 1. One
based on the fact that the markers are aligned vertically an
the other on the fact that the relative distances between mar
ers are known. Applying this information to the response im-
age has been proven to be better than integrating it with th
template itself.5 In other words, the following procedure
shows better performance than finding the maximum respons
position using a template with a global background as show
in Fig. 3.
434 Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3
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2.1 Marker-Locating Procedure

1. Calculate the template matching responsem(k, j ) for
the entire search area using the template for a sin
spot.

2. Find the position(k, j ) where the averaged measu
over the relative positions of the markers,m̄(k, j )
51/4$m(k, j )1m(k1dx1,j )1m(k1dx2,j )1m(k
1dx3,j )%, is maximum.

3. Test the success of locating markers.

2.2 End Procedure

In this procedure,dx1, dx2, and dx3 are the relative dis-
tances from the topmost marker, respectively.

In order to verify the success of locating a marker, it
preferable to investigate the distribution of the averaged m
sure. In other words, if there are some pixel positions wh
the responses are close to the maximum, then the positio
maximum response is not feasible as an indication of succ
ful marker location. To adapt for the variation of the respon
over the images, we calculated the standard deviation of
responses all over the image pixels and divided the maxim
response by the standard deviation to test the success o
location process. We denoted the ratio as the maximum
sigma ratio~MSR! as follows:

r m̄5
m̄max

sm̄
, ~1!

wherem̄max andsm̄ are the maximum and the standard dev
tion of the responses. Now, step 3 of the procedure given
Sec. 2.1 is replaced by the following procedure: ifr m̄ is
greater than the failure threshold, the marker is successf
located; if it is less than the failure threshold, the marker h
not been located.

The possible linear matching measures can be the cov
ance~C! and its normalized form(NC) as follows:

C~ i , j !5 (
k,l PTemplate

T~k,l !I ~ i 1k, j 1 l !,

~2!

NC~ i , j !5
(k,l PTemplateT~k,l !I ~ i 1k, j 1 l !

sTs I~ i , j !
,

wheresT ands I( i , j ) are the standard deviation of the tem
plate function values and the intensities of the image in
template region, respectively. Note that the covarianceC is
same as the mean difference between the image intens
inside the spot area and background becauseT(k,l ) has 1 in
the spot area and21 in the background. It is not adequate f
our application because it is possible for a probe spot to g
the maximum response, owing to the high intensity variat
of the spots. In particular, any multiple hybridized probes
ten deliver a greater matching response than the markers

Fig. 3 Template with global background.
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Fig. 4 Scatter plot of the MSR of the averaged normalized covariance
and the average of the proposed measure. Each data point was taken
from an image. The x-axis denotes the MSR of the normalized cova-
riance and the y-axis that of the proposed measure.
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The normalized covariance also can be regarded as th
mean intensity difference between the spot and backgroun
area, but normalized by the signal power of the entire tem
plate region. Although the normalization contributes to the
reduction of the signal intensity variation to some degree, we
can make the measure more independent of the signal vari
tion using the following equation:

M 8~ i , j !5No~$p:pPspot area,i ~p!.threshold%!

2No~$p:pPbackground,i ~p!.threshold%!,
~3!

No~$p:pPtemplate,i ~p!.threshold%!

5No~$p:pPobject%!,

whereNo(•), p andi (p) are the number of elements of a set,
a pixel, and the intensity at the pixel, respectively. The thresh
old is taken in this manner that the number of pixels greate
than the threshold is the same as that of the object. The abov
measure indicates the amount of filling of the spot area with
the relatively bright pixels and simulates the way that experts
investigate the hybridized spots. Actually, the number of
bright pixels only in the spot area is a sufficient and necessar
quantity for the above measure because the number of th
pixels is fixed as the template size, resulting in the following
equation:

M ~ i , j !5No~$p:pPspot area,i ~p!.threshold%!. ~4!

In Sec. 3 the proposed measure of Eq.~4! is evaluated for
locating markers compared with using the normalized covari
ance of Eq.~2!. To compare both measures, two aspects mus
be considered. One is that the failure to locate markers shou
be defined. The other is to predict the possible failure thresh
olds that are selected by the actual examiners according
their quality control strategy. In this paper, the failure was
decided subjectively and the MSR of the failed images serve
as the measure of the failure threshold. Note that even thoug
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e

h

the markers are successfully found, it is better to abandon
procedure if the MSR is less than the threshold. If a meas
is able to classify the success of locating markers m
strictly, then the number of the success cases below the fa
threshold will be smaller. A Gaussian distribution assumpt
was employed to handle the possible failure cases that w
not explored in this paper. Then a similar approach to
receiver operating characteristic~ROC! was utilized to
present the results of the comparison of the measures.

3 Experimental Results
The MSRs of both measures are scatterplotted in Fig. 4
1230 scanned images. Thex-axis of Fig. 4 denotes the MSR
of the normalized covariance and they-axis that of the pro-
posed measure. The figure shows that both measures
highly correlated results. The black circles, labeled ‘‘TRUE
show that the markers are successfully located with both m
sures. The other symbols were chosen for cases where at
one of the measures provided the wrong marker position.
data points of the symbol ‘‘3’’ are from the images with
neither distinguishable markers nor probes like the image
Fig. 5. We were not able to find any distinct markers a
probes in spite of 16-times amplification and gamma corr
tion of the images.

When there were no distinct markers but some hybridiz
probes as shown in Fig. 6, both MSRs were somewhat hig
than those without any hybridized spots~the two white circles
in Fig. 4!. In that case, the normalized covariance and

Fig. 5 Example of images that have no hybridized markers on probes.
Location of markers failed with both measures. All the images are
amplified 16 times and gamma-corrected for display purposes.

Fig. 6 Marker-locating results for an image with some hybridized
probes and no distinct markers. The markers are falsely located at the
probes just left of the markers using both measures. (a) The original
image. (b) The result with the normalized covariance. (c) The result
with the proposed measure. All of the images are amplified 8 times
and gamma-corrected.
Journal of Biomedical Optics d May/June 2004 d Vol. 9 No. 3 435
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Fig. 7 Marker-locating results for an image in which the hybridized
markers are too obscure. The marker was located correctly with the
normalized covariance. (a) The original image. (b) The result with the
normalized covariance. (c) The result with the proposed measure. All
of the images are amplified 16 times and gamma-corrected.
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proposed measure found the probe spots instead of the mar
ers, as shown in Figs. 6~b! and 6~c!. In these figures, four
aligned circles depict the estimated location of the markers.

While the markers were barely distinguishable, as shown
in Fig. 7, the MSRs had a value similar to that of the previous
examples~the triangle symbol between the white circles in
Fig. 4!. Even though the normalized covariance seems to giv
the correct marker position, as in the center image in Fig. 7, i
should be reported as a failure because the greater value of t
MSR can be delivered at the false position, as in the exampl
in Fig. 6.

Since the noise was highly clustered as in Fig. 8, the pro
posed measure gave the correct results while the normalize
covariance did not. It was not necessary to take into accoun
the failure threshold because the MSRs of both measures pr
vided reasonable values~the diamond symbol in Fig. 4!. They
were either large or small enough to be classified exactly
Figure 8 also shows that the proposed measure is more su
able for images with highly clustered noise.

There were two unexpected cases like the example show
in Fig. 9. The markers are slightly misaligned in a vertical
direction, which might be caused by the malfunction of the
dotter. In that case, both MSRs were relatively large~the two
rectangles in Fig. 4!. Even if this misalignment were corrected
by improving the quality control of the dotter, it is worth
regarding the measured values as indicating failure threshold
in the performance comparison. It is interesting to note tha
we
the
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the proposed measure locate a position fairly close to
markers, in contrast to the normalized covariance.

We selected three failure thresholds to compare the p
posed measure with the normalized covariance. They
shown in Fig. 4 as the arrows labeled 1 to 3 by grouping
the failures in three classes. The first group was for the fail
of both measures~‘‘ 3’’ symbols in Fig. 4!, the second was for
cases with only hybridized probes and markers that were
obscure because in both cases the measures delivered s
values~the white cicles and the triangle in Fig. 4!. The third
was for the misalignment cases~the rectangles in Fig. 4!.
Table 1 shows the number of ‘‘TRUE’’ data points below ea
failure threshold that was taken as the maximum MSR of e
group. It also shows the percent probability that ‘‘TRUE’’ da
points are below the failure thresholds. The probability w
taken under the assumption that the MSRs of ‘‘TRUE’’ da
points were distributed in the Gaussian form.

Table 1 shows that the proposed measure is able to clas
success more strictly than the normalized covariance for
the failure cases investigated in this study. To predict the o
possible failure cases, it is worth testing the increasing tr
in the number of ‘‘TRUE’’ data points, varying the failur
threshold from the first to the third threshold. If the MSR
below the first threshold, we can assume that marker loca
has failed. However, it currently is not clear whether the th
threshold can be employed as the decision boundary for
cess. That is because the marker alignment can be contr
by the chip manufacturer’s quality assurance. However,
can expect that the failure threshold might exist between

Fig. 9 Marker-locating results for an image in which the markers are
misaligned. The markers were located at a fairly reasonable position
with the proposed measure (a) The original image. (b) The result with
the normalized covariance. (c) The result with the proposed measure.
All the images are amplified 4 times and gamma-corrected.
Fig. 8 Marker-locating results for an image with highly clustered
noise. The markers were located correctly with the proposed measure.
(a) The original image. (b) The result with the normalized covariance.
(c) The result with the proposed measure. All the images are amplified
4 times and gamma-corrected.
Table 1 Number of TRUE data points below each threshold shown
in Fig. 4. (1218 TRUE data points).

Failure
threshold
position

Number of TRUE
data points below the

threshold

Percentage below the
threshold under the

Gaussian assumption

NC Proposed NC Proposed

1 1 0 0.03 0.00

2 2 0 0.23 0.01

3 64 51 4.59 3.08
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Fig. 10 The increase in the number of success cases below the failure
threshold, which varies from the first failure threshold (T1) to the third
failure threshold (T3).
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first and third thresholds. Figure 10 depicts the variation in the
‘‘TRUE’’ data points below the threshold according to the
failure threshold. The solid curve labeled ‘‘Proposed’’ is for
the proposed measure and the dashed one is for the norm
ized covariance~labeled ‘‘NC’’!. The solid curve is more
downwardly concave than the dashed one. It shows that w
can have a better advantage with the proposed measure th
with the normalized covariance whenever the failure thresh
old is established between the first and the third thresholds.

In order to compare the accuracy of locating a marker with
both measures, we compared their estimated positions an
selected cases where the distances between them were grea
than two pixels. There were fifteen such images. We locate
the markers for them manually and calculated the distance
between the resultant positions and the markers using bo
measures. Table 2 shows the mean and standard deviation
the distances for the measures. In the table, ‘‘NC’’ and ‘‘Pro-
posed’’ indicate the normalized covariance and the propose
measure, respectively. Even though both mean and standa
deviation are a litte bit smaller with the proposed measure, w
concluded that the accuracy of locating markers was simila
with both measures.

4 Discussion
This paper has presented a nonlinear matching measure th
uses estimates of the number of white pixels in the spot area
This method was combined with a marker location strategy
that combined template matching and integrating the knowl

Table 2 Mean and standard deviation of the distances between the
manually determined position and that found by each method.

NC Proposed

Mean
(pixels)

2.40 2.39

Std (pixels)
Dev.

1.21 1.06
l-

n

d
ter

of

d

at
.

edge of the relative distances between markers. The s
strategy with a normalized covariance was employed for v
fying the proposed measure.

A total of 1230 images of hybridized HPV microarray
were used to evaluate the marker-locating performance of
proposed measure and the normalized covariance. The fa
cases were analyzed to define failure thresholds that indic
the decision boundary for success in locating markers.
performance criterion was how small the number of the s
cess cases below the thresholds was. That was because
measure was able to classify success more strictly, the num
would be smaller. The proposed measure performed be
than the normalized covariance for all the failure cases p
sented. It also promises to work better for the possible failu
that were not found in these experiments. The location ac
racy was also analyzed and showed almost the same pe
mance.

When the markers are misaligned vertically, both measu
deliver relatively high values because the marker locat
strategy assumes that the markers are aligned verticall
these cases are viewed as failures, the threshold will bec
so high that we should abandon many successfully loca
markers~4.59% with the normalized covariance and 3.08
with the proposed measure!. The investigation described her
can be used in designing quality assurance guidelines in
manufacture. The framework given in this paper can also
utilized to guide the other design issues for these kinds
chips.
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