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Abstract. The method of paired comparison based on Thurstone’s
case V of his law of comparative judgments is often used as a psy-
chophysical method to derive interval scales of perceptual qualities
in imaging applications. However, methods for determining confi-
dence intervals and critical distances for significant differences have
been elusive, leading some to abandon the simple analysis provided
by Thurstone’s formulation. Monte Carlo simulations of paired com-
parison experiments were performed in order to derive an empirical
formula for determining error. The results show that the variation in
the distribution of experimental results can be well predicted as a
function of stimulus number and the number of observations. Using
these results, confidence intervals and critical values for compari-
sons can be made using traditional statistical methods. © 2006 SPIE
and IS&T. �DOI: 10.1117/1.2181547�

1 Introduction
There are many psychophysical techniques for creating
scales of perception and sensation. Common techniques
such as the classical psychophysical threshold methods or
ratio scaling methods can be used to create scales of sen-
sory magnitude.1–3 However, for judgments of image qual-
ity or image preference, these techniques may not be appli-
cable. For example, if one wants to determine which of
several printers produces prints that are of highest image
quality, there is no one continuous physical parameter that
is being manipulated. In addition, the scale that is to be
created is not a ratio scale because no concept of “zero
quality” exists. What is desired is a scale that assigns num-
bers to the psychological percept that allows comparisons
of the different stimuli. Such techniques for creating inter-
val scales include different ranking, sorting, and compari-
son procedures and statistical analyses that transform the
subjects’ ratings into interval scales.

The method of paired comparison has become a popular
tool for evaluating the effect of various algorithms or treat-
ments on image quality or for quantifying the change in a
perceptual characteristic �Engeldrum’s “-nesses”4� such as
perceived contrast, sharpness, graininess, etc. Specifically,
reference is made to Thurstone’s law of comparative
judgment.5–7 In its original formulation,6 Thurstone pre-
sents a simple theory of the discriminal process and how its
nature allows the construction of an interval scale based on

Paper 05150LR received Aug. 12, 2005; revised manuscript received Dec.
12, 2005; accepted for publication Jan. 30, 2006; published online Mar. 9,
2006.

1017-9909/2006/15�1�/010502/3/$22.00 © 2006 SPIE and IS&T.

Journal of Electronic Imaging 010502-
comparisons of pairs of stimuli. This has been the starting
point for much research in the application and analysis of
paired comparison data. In its original formulation with its
simplifying assumptions, the analysis of paired comparison
data is computationally easy and straightforward.

This said, we have had some problems in implementing
Thurstone’s law because the ability to compute confidence
intervals is missing in the formulation. Later research has
used modifications of Thurstone’s law to produce error
metrics,8 but this seems to be at a cost of losing the inherent
simplicity of Thurstone’s original formulation. In this paper
we use Monte Carlo simulations to estimate an empirical
formula for constructing error bars based on Thurstone’s
law.

2 Thurstone’s Law of Comparative Judgment
Thurstone presents the law of comparative judgment6 based
on the following propositions:

1. Each stimulus gives rise to a discriminal process,
which has some value on the psychological con-
tinuum of interest.

2. Due to momentary fluctuations �occurring within or
between observers�, the value of a stimulus may vary
on repeated presentations. The distribution of this
fluctuation can be characterized by a postulated nor-
mal distribution.

3. The mean and standard deviation of the distribution
associated with a stimulus are its internal scale values
and discriminal dispersion, respectively.

4. Therefore the distribution of the difference between
two stimuli is also normally distributed and it is a
function of the proportion that one stimulus is chosen
as greater than the other.

5. The difference in scale values R between two stimuli
i and j is:

Ri − Rj = zij
��i

2 + � j
2 − 2rij�i� j �1�

where Ri and Rj represent the scale values of stimuli i and
j, �i and � j are the standard deviations of the respective
discriminal dispersions, rij is the correlation between the
two discriminal processes, and zij is the normal deviate �the
z-score� corresponding to the proportion of times stimulus j
is judged is judged greater along the psychological con-
tinuum than stimulus i.

For Thurstone’s case V, we assume that: �1� the evalua-
tion of one stimulus along the continuum does not influence
the evaluation of the other in the paired comparison �rij

=0� and �2� the dispersions are equal for all stimuli ��i

=� j�. These assumptions lead to this formulation of the
law:

Ri − Rj = zij��2. �2�

Thurstone5 argued that these assumptions apply even in
cases where Weber’s and Fechner’s law apply and outlined
a procedure for testing the validity of the assumption of
equal variance. Mosteller’s �2 test of goodness of fit9 can
also be used to test these assumptions. For our purposes, in
paired comparison along continua such as image quality or

preference we accept these assumptions, as has been done
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in the literature,2,10 and these assumptions are used as the
basis of our simulations.

The analysis of data, according to this equation, is as
follows. With n stimuli, n�n−1� /2 stimulus pairs are pre-
sented N times for judgment where N is the product of the
number of presentations of each pair by each observer by
the total number of observers. A frequency matrix �where
the i’th column entry is chosen over the j’th row entry� of
these judgments is constructed and then converted into pro-
portions by diving by N. In turn the proportion are con-
verted into normal deviates and the average of the columns
create the interval scale values for the stimuli.

There seems to be no simple solution in the literature for
determining the confidence intervals based on the case V
solution. Bock and Jones8 present an equation for calculat-
ing confidence intervals based on the arcsine transforma-
tion rather than the normal deviate. David11 presents other
methods for determining the statistical significance of scale
value differences but these too rely on different analyses of
the data. In the past, we have used Eq. �2� to calculate
confidence. The 95% confidence intervals were CI
=R±1.96�0.707/ �N� where the term �0.707/ �N� reflects
an estimate of the standard error, but we have never quite
been satisfied with this because we surmised that the num-
ber of stimuli must also play a role in determining the error.
Fortunately, the confidence intervals that result from this
equation are quite conservative so that our previous experi-
mental findings are not put into jeopardy.

3 Monte Carlo Simulation
To determine how scale values can vary and then empiri-
cally determine the standard deviation of these values for
the construction of confidence intervals and tests of signifi-

Fig. 1 Results of the simulations of paired com
standard deviation of the scale values as a func
with fit of Eq. �3�.
cance a Monte Carlo simulation of the paired comparison
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experiment was performed. By assuming an underlying
psychological continuum that conforms to Thurstone’s case
V and randomly sampling from normal distributions along
this continuum we can recreate the distribution of results
that are expected over many repetitions of the experiment.

3.1 Simulation
For n stimuli, we chose n values as the means of normal
distributions all with equal standard deviations. Samples
were chosen from each of the n�n−1� /2 pairs of distribu-
tions and compared and the results were tallied. This was
done N times for the N observations in the experiment. This
would constitute one experiment in which the scale values
were calculated as described above. This experiment was
then repeated many times so that the means and standard
deviations of the scale values could be calculated. The
mean of the standard deviations of each of the scale values
was then calculated to determine the overall standard de-
viation expected from an experiment with n stimuli and N
observations.

So, for example, for n=6 stimuli, 6 normal distributions
with means located at �5 6 7 8 9 10� and a standard devia-
tion of 5 were used for sampling of the stimulus pairs. �A
large standard deviation along the psychological continuum
was chosen to reduce the number of results that contained
unanimous judgments.� This was repeated for, say, N=30
observations. For each pair of n and N, the experiment was
repeated 10,000 times and the means and standard devia-
tions of the 6 scale values were calculated. The mean of the
6 standard deviations was taken as the overall observed
standard deviation seen in an experiment.

The number of stimuli used in the experiment was n
= �4 5 6 7 8 10 12 15�. The number of observation was N

n experiments showing the observed average
the number of observations �N� and stimuli �n�
pariso
tion of
= �10 20 30 40 50 60�. Each experiment was repeated
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10,000 times except when n=15, which was repeated 5,000
times because of limitations in computer memory. These
simulations were repeated twice with the standard deviation
of the underlying psychological distribution set at a value
of 5 and 6. The locations of the means of the distributions
along the psychological continuum and their standard de-
viations did not have an effect on the results, as would be
expected from the theory.

Figure 1 shows the results of the simulation. The ob-
served standard deviation is a function of both the number
of stimuli n and the number of observations N.

3.2 Estimates of the Observed Standard Deviation
Abandoning an analytic approach, a number of equations
were fit to the data to find an empirical equation that could
capture the observed standard deviation as a function of the
number of stimuli and observations. The following equa-
tion gave a good fit:

�obs = b1�n − b2�b3�N − b3�b5 �3�

with b1=1.76, b2=−3.08, b3=−0.613, b4=2.55, and
b5=−0.491. The solid lines in Fig. 1 show the fit of this
equation to the data. The rms of this fit is 87%. The fit is
very good, which is not remarkable given that there are 5
parameters. It does seem to overestimate the standard de-
viation at N=10. This is not a bad feature considering that
with such a small number of observers there is much less
power in the experiment and the chance of unanimous
judgments occurring by chance is increased. Repetition of
the simulation with various values of n, N, and mean values
on the psychological continuum verify that this equation
gives an excellent approximation of the observed variabil-
ity.

3.3 Implementation
To calculate 95% confidence intervals �CI� around the in-
terval scale values determined in any particular experiment,
one can use the expression CI= ±1.96�obs. In designs of
paired comparison experiments that reduce experimental
labor7 the expression can also be used to adjust the size of
the CIs for the various experimental partitions. Besides its
use for determining confidence intervals, the value of �obs
can be useful in determining more stringent critical values
and confidence intervals for multiple comparisons of scale
values. It is recognized that multiple comparisons of pairs
of means in the analysis of variance leads to an increase in
errors. It must also be true for the comparison of multiple
scale values in paired comparison experiments. Keppel12

enumerates a number of planned and post hoc tests such as

the Scheffé, Dunnett, and Tukey tests for controlling error
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rate for multiple comparisons. Using an empirical value of
the standard deviation in the place of the standard error in
these tests may prove useful.

3.4 Goodness of Fit
In the course of doing the simulations, Mosteller’s �2 test
of goodness of fit9 was performed on each of the individual
experiments. This test compares the arcsine transform of
the observed proportions to those predicted by the resulting
scale values. The proportion of the experiments that were
rejected based on this test for the different combinations of
n and N were calculated. Surprisingly, these proportions
were never less than 0.05 even though the underlying dis-
tributions from which the observations were drawn were
normally distributed, conforming to case V assumptions,
and unidimensional. This would lend one to think that this
test is conservative, although Engledrum2 cites Mosteller’s
report9 that the model often appears better than it really is.

4 Conclusions
In this paper Monte Carlo simulations were used to esti-
mate an empirical formula for the standard deviation of
scale values and the constructing confidence intervals based
on Thurston’s law. It is recognized that a thorough under-
standing of the underpinnings of statistical distributions,
experimental noise, and mathematical precision would lead
to a much more satisfactory answer, but for now we are
more interested in creating a tool for the analysis and de-
termination of the significance of our data.
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