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Automatic identification of biological microorganisms
using three-dimensional complex morphology
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Abstract. We propose automated identification of microorganisms us-
ing three-dimensional �3-D� complex morphology. This 3-D complex
morphology pattern includes the complex amplitude �magnitude and
phase� of computationally reconstructed holographic images at arbi-
trary depths. Microscope-based single-exposure on-line �SEOL� digital
holography records and reconstructs holographic images of the bio-
logical microorganisms. The 3-D automatic recognition is processed
by segmentation, feature extraction by Gabor-based wavelets, auto-
matic feature vector selection by graph matching, training rules, and a
decision process. Graph matching combined with Gabor feature vec-
tors measures the similarity of complex geometrical shapes between a
reference microorganism and unknown biological samples. Auto-
matic selection of the training data is proposed to achieve a fully
automatic recognition system. Preliminary experimental results are
presented for 3-D image recognition of Sphacelaria alga and Tri-
bonema aequale alga. © 2006 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

Three-dimensional �3-D� as well as two-dimensional �2-D�
optical and image processing techniques have been investi-
gated to identify specific objects in unknown scenes.1–13 Au-
tomatic and real-time identification of microorganisms has
vast potential for various applications such as detection of
biological weapons and harmful diseases, diagnosis of dis-
eases, investigation of food safety, and ecological monitoring.
There are conventional methods to identify microorganisms;
however, the conventional techniques require time-consuming
culturing and biochemical analysis with special skills. There-
fore, automated and real-time recognition of microorganisms
using 3-D optoelectronic imaging and can be beneficial.

Automated discrimination of living microorganisms in un-
known images is very challenging. Tiny biological living ob-
jects can have simple and undistinguishable morphologies be-
tween different species; and many morphological variants
exist in the same class.14 Research and development in this
field have been performed using specific color and shapes
based on captured 2-D intensity images.15–20 The identifica-
tion of tuberculosis bacteria and Vibrio cholerae has been
studied based on their colors and 2-D shapes.15,16 In Ref. 17,
bacteria in a wastewater treatment plant are identified by mor-
phological descriptors. The aggregation of streptomyces is
classified into different phases by measuring the aggregation
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size and reaction time.18 In Ref. 19, plankton recognition is
performed using preselected geometrical features. More re-
search on image analysis and recognition of microorganisms
can be found in Ref. 20. Recently, 3-D microorganism recog-
nition was proposed using the single-exposure on-line
�SEOL� digital holography.3,13

In this paper, complex information �magnitudes and phase�
is utilized, providing distinct features that are impossible to be
observed on 2-D intensity images. The phase change is due to
the retardation of light as it propagates through the biological
sample. We propose the automatic selection process of train-
ing data and present experimental results on the recognition of
microorganisms. Figure 1 shows the block diagram of the
recognition system. Microorganism in the Fresnel diffraction
field is recorded by SEOL digital holography.11–13 Complex
amplitude holographic images21–24 are reconstructed at arbi-
trary depths by the inverse Fresnel transformation. The com-
plex morphological pattern is segmented and salient features
are extracted by the Gabor-based wavelets.25,26 The training
data is automatically selected by means of Gabor feature vec-
tors and the graph matching technique.27–31 The automatic se-
lection of training data is useful when biological samples
overlap and/or cluster, which make it difficult to select indi-
vidual objects as training data. The rigid graph matching
�RGM� techniques measures the similarity of complex geo-
metrical shapes between a reference microorganism and un-
known biological objects. A training rule is applied and the
mean vector is stored into the database for the known refer-
1083-3668/2006/11�2�/024017/8/$22.00 © 2006 SPIE
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ence. For the identification of unknown inputs, Euclidean dis-
tance between the reference mean vector and the feature vec-
tor of input objects are compared with a threshold.

Section 2 briefly reviews the recording and reconstruction
of the SEOL digital holography. The segmentation and Gabor-
based wavelets are illustrated in Sec. 3. Section 4 describes
the feature vector selection with graph matching. Section 5
presents the training and decision processes. The experimental
results and conclusions follow in Secs. 6 and 7, respectively.

2 Review of SEOL Digital Holography
In this section, we review the recording and reconstruction of
the 3-D complex information. The complex wave in the
Fresnel diffraction field is recorded by the microscope-based
Mach-Zehnder interferometer �see Fig. 2�a��. The 3-D com-
plex holographic images are computationally reconstructed by
the inverse Fresnel transformation at arbitrary depth �d� �see
Fig. 2�b��. The SEOL digital holography is adopted for its
advantages such as real-time detection and robustness to en-
vironmental fluctuation.13 The reconstruction process of the
SEOL digital holography is described in Appendix A. Figure
3 shows the magnitude and the phase of the reconstructed
holographic image of Sphacelaria alga.

3 Segmentation and Feature Extraction
Since the coherent light is scattered by the semitransparent
objects, the intensity on the foreground objects is lower than
the background field. During the preprocessing, we subtract
the background diffraction field in the reconstructed images.
The detailed segmentation process is presented in Appendix
B.

After the segmentation, features of microorganisms are ex-
tracted by the Gabor-based wavelets to generate a node vector
at each pixel. Gabor-based wavelets are composed of multio-
riented and multiscaled Gaussian-form kernels that are suit-
able for local spectral analysis.25,26 We define a node vector at
the pixel �m ,n� as

v�m,n� = ��
v=1

V

�h1v�m,n�� ¯ �
v=1

V

�hUv�m,n��� t

, �1�

huv�m,n� = guv�m,n� � Ô�m,n� , �2�

where guv�x� is the Gabor kernel with indices u and v; U and

Fig. 1 Block diagram of the autom
V are the total number of decompositions along the radial and
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tangential axes, respectively; Ô is the segmented 3-D com-
plex holographic image; � stands for the 2-D convolution op-
erator, and the superscript t denotes transpose. The kernel of
the Gabor-based wavelets is presented in Appendix C.

4 Automatic Training Selection Using Graph
Matching

In this section, we utilize the graph-matching technique to
choose the data for the training process. The graph-matching
technique was developed for pattern recognition of distorted
objects.27–31 However, in the case that the image pattern of a
reference object cannot be individually observed, or they are
clustered as may be the case with some microorganisms, the
selection of training data can be a labor-intensive task. In this
paper, we achieve the fully automated recognition system by
choosing the feature vectors to be trained by means of the
RGM technique.

Let R and T be two identical and rigid graphs that are
defined as sets of nodes associated in the local area. The graph
R and T are placed on the image Or and the image Ot of the
same reference microorganism, respectively. The reference
graph R is translated by a fixed translation vector pr and ro-
tated by a fixed clock-wise rotation angle �r to cover a pre-
determined a referenced morphology. Therefore, the position
vectors of the nodes in the reference graph R are computed as

xk�pr,�r� = A��r��xk
o − xc

o� + pr, k = 1, . . . ,K , �3�

A��� = � cos � sin �

− sin � cos �
� , �4�

where xk
o is the position of the node k of a primitive graph

without any translation and rotation, xc
o is the center of the

primitive graph, and K is the total number of nodes in the
graph. In a similar way, any rigid motion of the training graph
T on the image Ot can be described by a translation vector pt
and a clockwise rotation angle �t as

xk�pt,�t� = A��t��xk
o − xc

o� + pt, k = 1, . . . ,K , �5�

where xk�pt ,�t� is a position vector of the node k in the graph
T.

We sequentially search for a similar local morphology with
the referenced morphology on the image Or by translating and

d real-time identification system.
rotating the graph T on the image Ot. We choose the node
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vectors vT�xk�pt ,�t�� �see. Eq. �1�� of the graph T as training
data if the following two conditions are satisfied:

SRT�pt, �̂t� � �S and CRT�pt, �̂t� � �C, �6�

where �S and �C are thresholds for the similarity and the

difference cost, and �̂t is obtained by searching the best
matching angle to maximize the similarity function at the po-
sition vector pt as

�̂t = arg max
�t

SRS�pt,�t� . �7�

The similarity function and the difference cost in Eq. �6�
are defined as

SRT�pt,�t� =
1

K�
K

	vR�xk�pr,�r��,vT�xk�pt,�t��

�vR�xk�pr,�r����vT�xk�pt,�t���

, �8�

Fig. 2 Schematic diagrams for �a� optical setup of SEOL digit
k=1

Journal of Biomedical Optics 024017-
CRT�pt,�t� =
1

K�
k=1

K

�vR�xk�pr,�r�� − vT�xk�pt,�t��� , �9�

where 	·
 stands for the inner product of two node vectors, and
vR�xk�pr ,�r�� is the node vector of the graph R.

5 Training and Decision Process
We define a feature vector as the collection of the node vec-
tors of the graph. The feature vector to be trained is presented
as

fT = �vT
t �x1�p̂t, �̂t�� ¯ vT

t �xK�p̂t, �̂t���t, �10�

where vT�xk�p̂t , �̂t�� is the node vector of the graph T, which
is accepted for training; and the superscript t denotes matrix
transpose. One common way for training and testing is to
obtain the sample mean of training data and measure the Eu-
clidean distance to determine the identity of unknown inputs.

graphy and �b� the reconstruction process at arbitrary depth.
al holo
Let a set of training data be �:
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� = �fT
1, . . . ,fT

NT . �11�

The set � is composed of the feature vectors fT
1 , . . . , fT

NT,
where NT is the total number of the training data. We train
those feature vectors by computing the sample mean as

m f =
1

NT
�
i=1

NT

fT
i . �12�

To recognize unknown inputs, the graph S is translated and
rotated on the unknown image Os as in the training procedure
�see Eq. �5��. The graph S has the same shape and size with
the graph R and T. We compare the Euclidean distance with a
threshold at every translation vector ps and the rotation angle

�̂s. We accept the detection of the referenced 3-D complex
morphology if the following condition is satisfied:

�m f − fS�ps, �̂s�� � �D, �13�

where �D is a threshold of detection. The feature vector

fS�ps , �̂s� is obtained from the graph S, which is translated by
ˆ

Fig. 3 Computationally reconstructed holographic image of
Sphacelaria alga �d=180 mm� for �a� magnitude and �b� phase.
the vector ps and rotated by the angle �s as

Journal of Biomedical Optics 024017-
fS = �vS
t �x1�ps, �̂s�� ¯ vS

t �xK�ps, �̂s���t, �14�

and �̂s is the angle, which minimizes Eq. �13� as

�̂s = min
�s

�m f − fS�ps,�s�� . �15�

6 Experimental Results
In the recording of the SEOL digital hologram,13 the size of
the CCD for SEOL digital hologram is 2048�2048 pixels
and 1 pixel size is 9�9 �m. The CCD is placed 500 mm
from the microorganism samples. The thickness of the micro-
organisms varies between 10 and 50 �m. To test the recogni-
tion performance under various circumstances, we generate
SEOL holograms of nine Sphacelaria alga and Tribonema
aequale alga samples, respectively. We denote nine
Sphacelaria samples as A1,¼,A9 and nine Tribonema
aequale samples as B1,¼,B9. Since we have changed the
position of the CCD during the experiments to test the robust-
ness of the recognition system, the reconstruction depth for
the focused image varies from 180 to 300 mm. After the re-
construction, the magnitude and phase information of compu-
tationally reconstructed holographic 3-D images are cropped
and reduced into 256-�256-pixel images with a reduction
ratio of 0.25 considering the computational complexity.

For the segmentation, we assume less than 20% of lower
intensity region is occupied by microorganisms and the inten-
sity of microorganisms is less than 45% of the background
diffraction field. Therefore, the maximum intensity rate rmax
in Eq. �18� and the segmentation probability Ps in Eq. �19� are
set at 0.45 and 0.2, respectively. The parameters for Gabor-
based wavelets are set at �=	, k0=	 /2, 
=�2, U=5, and
V=6 in Appendix C. Figure 4 shows the component of the
node vectors in Eq. �1�.

A rectangular grid is selected as a reference graph for the
Sphacelaria alga, which shows regular thickness �see Fig. 3�.
The reference graph R is composed of 25�3 nodes and the
edge distance between nodes is 4 pixels in the x and y direc-
tions. Therefore, the total number of nodes in the graph is 75.
The reference graph R is placed with pr= �81,75�t and �r
=135 deg in the sample image A1. Considering the computa-
tional load, the graphs T is translated by every 3 pixels in the
x and y directions for measuring the similarity and difference
to the graph R for the training data selection. To search the
best matching angles, the graph T is rotated by 7.5 deg from
0 to 180 deg at every translated location. When the positions
of rotated nodes are not integers, they are replaced with the
nearest neighbor nodes. For the training data selection, the
thresholds �S and �C are set at 0.95 and 1.2, respectively, in
Eq. �6�. For the decision process the threshold �D is set at 9.5
in Eq. �13�. Figure 5�a� shows the reference graph on the
sample image A1 and Fig. 5�b� shows automated selection of
the training data where 33 graphs �feature vectors� are se-
lected. Figures 5�c� and 5�d� show examples of recognition
results performed on the true class sample A3, where 159
feature vectors are identified, and the false class sample B1,
where no detection is accepted. Figure 6�a� shows the number
of detection in true class samples A1 to A9 and false class

samples B1 to B9. The number of detection varies from 14 to
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159 in true class samples A1 to A9. No detection is accepted
in false class samples B1 to B9. Figure 6�b� shows the mini-
mum Euclidean distance in all samples. The minimum Euclid-
ean distances in false class samples B1 to B9 are larger than
those in true class samples A1 to A9 showing the discrimina-

Fig. 4 Components of the node vectors when
tion capability of the proposed recognition system.

Journal of Biomedical Optics 024017-
7 Conclusions

In this paper, we have described the identification of biologi-
cal microorganisms using their 3-D complex amplitude of
geometrical information obtained by computer-reconstructed

14,32

1, �b� u=2, �c� u=3, �d� u=4, and �e� u=5.
SEOL holographic images. Segmentation, Gabor feature
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extraction, feature vector selection using graph matching, and
training and decision processes are presented to recognize a
predetermined 3-D morphology in unknown biological
samples. We choose the feature vectors to be trained by means
of the RGM technique to remedy the possibility of biological
samples overlap and/or cluster, which make it difficult to se-
lect individual objects for the training purpose. Training and
decision rules are applied to show the performance of the
proposed system. Note that more sophisticated training and
decision rules can be considered,7,19 depending on the kind of
microorganisms.

Appendix A

The complex Fresnel diffraction field on microorganisms is
reconstructed by the inverse Fresnel transformation at 3-D

Fig. 5 �a� Reference graph on the sample A1, �b� training data select
decision result on false class sample B1.
coordinates �m ,n ,d�:
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O�m,n,d� = exp�− j
	

�d
��X2m2 + �Y2n2��

� �
m�=1

Nx

�
n�=1

Ny

Ho�m�,n��

�exp�− j
	

�d
��x2m�2 + �y2n�2��

�exp� j2	�mm�

Nx
+

nn�

Ny
�� , �16�

where O�m ,n ,d� is the complex amplitude reconstructed at
2-D discrete coordinates �m ,n� and depth d; Ho is the SEOL
digital hologram; ��X ,�Y� and ��x ,�y� are 2-D resolutions
at the image plane and the hologram plane, respectively; � is

the sample A1, �c� decision result on true class sample A3, and �d�
ion on
the wavelength of the coherent light source; and Nx and Ny
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are the size of the hologram in x and y directions, respec-
tively.

Appendix B
Foreground objects are segmented by means of the histogram
analysis of the background diffraction field:

Ô�m,n�

= ��O�m,n��exp�j��m,n� − m� if �O�m,n�� � Is

0 otherwise
� ,

�17�

where O�m ,n� is the complex holographic image O�m ,n�
= �O�m ,n��exp�j�m ,n��, and m is the sample mean of the
phase �m ,n�.

The threshold Is is determined from the histogram analysis

Fig. 6 �a� Number of detections and �b� minimum Euclidean distance.
and the maximum background field:
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Is = min���min
rmax max

m,n
��O�m,n��� , �18�

where rmax is the maximum rate of the coherent light. The
threshold ��min

is a minimum value of �� satisfying the fol-
lowing equation:

Ps �
1

NxNy
�
i=1

�

h��i� , �19�

where Ps is a predetermined segmentation probability; h��i� is
the histogram, i.e., the number of pixels of which magnitude
is between �i−1 and �i; �i is the i’th quantized magnitude level;
and �min is the minimum number of pixels that satisfies Eq.
�19�. In this paper, the total number of histogram levels is set
at 256.

Appendix C
The discrete Gabor kernel guv�m ,n� at the position vector x
= �m n�t is defined as

guv�x� =
�kuv�2

�2 exp�−
�kuv�2�x�2

2�2 ��exp�jkuv
t x� − exp�−

�2

2
�� ,

�20�

and the frequency response of the discrete Gabor kernel is

Guv�k� = 2	�exp�−
�2

2�kuv�2
�k − kuv�2�

− exp�−
�2

2�kuv�2
��k�2 + �kuv�2��� , �21�

where � is proportional to the standard deviation of the
Gaussian envelope; and kuv is a discrete wave number vector:
kuv=k0u�cos v sin v�t, k0u=k0 /
u−1, and v= ��v−1� /V�	,
where u=1, . . . ,U and v=1, . . . ,V; k0u is the magnitude of
the wave number vector; v is the azimuth angle of the wave
number vector; k0 is the maximum carrier frequency of the
Gabor kernels; 
 is the spacing factor in the frequency do-
main; u and v are the indices of the Gabor kernels; U and V
are the total numbers of decompositions along the radial and
tangential axes, respectively.
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