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Abstract. A nominal model wherein the nanowires of a chiral sculptured thin film (STF) are
considered as strings of slender ellipsoids indicates that the circular Bragg phenomenon evinced
by chiral STFs can be exploited to optically sense small concentrations of metal nanoparticles.
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1 INTRODUCTION

Inorganic clusters of linear dimensions between 1 to 3 nm coalesce to form ensembles of
parallel, shaped nanowires during physical vapor deposition (PVD) on a suitably mobile sub-
strate at appropriate temperature and pressure, the ensembles being called sculptured thin films
(STFs) [1]. Many optical applications of STFs as polarization filters [2,3] and sensors [4,5] have
been established within the past few years, and improved techniques to deposit STFs continue
to emerge [6–8].

The nanowires of a chiral STF are helical in shape, which is responsible for the display of
circular Bragg phenomenon that is exploited for circular-polarization-rejection filters [1, 2] as
well as circularly-polarized-light emitters [9]. STFs are porous materials. Infiltration of the
void regions of a chiral STF by a fluid leads to a shift of the circular Bragg regime [4, 10, 11],
depending on the porosity of the thin film and the dielectric contrast between the nanohelixes
and the infiltrant fluid.

This theoretical communication is premised on the systematic alteration of the optical char-
acteristics of chiral STFs after infiltration by metal nanoparticles, and provides a theoretical
argument for the sensing of metal nanoparticles by exploiting the spectral shifts of the circular
Bragg phenomenon. Metals provide an uncommon dielectric contrast to the inorganic materi-
als that many STFs today are made of. The relative permittivities of oxides and fluorides and
other commonly used organic and inorganic optical materials have positive real parts in the vis-
ible regime [12]. The relative permittivities of fluids generally have similar characteristics. In
contrast, the relative permittivities of metals have negative real parts in the same wavelength-
regime [13].

The optical response characteristics of a chiral STF infiltrated uniformly with metal particles
can be theoretically predicted by (i) first using a local-homogenization model to obtain the
reference relative permittivity dyadic [1, Ch. 6], and (ii) then exploiting the standard solution of
a matrix ordinary differential equation to solve a boundary-value problem [1, Ch. 9]. The local-
homogenization model is based on the celebrated Bruggeman formalism. This formalism yields
physically implausible results when the volumetric fraction of the metal is significantly high in
a two-constituent composite material [14, 15]. However, that implausibility is not a significant
issue in the present context, because the volume fraction of the metal is not expected to exceed
0.01. The nanoparticles are supposed to be spheres of diameters around 20 nm, so that they are
electrically small in the visible regime but are not so small that a relative permittivity cannot be
prescribed for them [16].
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The plan of this communication is as follows. Section 2 contains brief descriptions of the
relative permittivity dyadic of a chiral STF infiltrated uniformly with the chosen nanoparticles,
the local-homogenization model for a three-constituent composite medium, and the boundary-
value problem for the reflection and transmission of obliquely incident plane waves by a metal-
infiltrated chiral STF of finite thickness. Numerical results are presented and discussed in Sec. 3.
Vectors are in boldface, dyadics are double-underlined. An exp(−iωt) time-dependence is
implicit with i =

√−1, ω as the angular frequency, and t as time.

2 THEORY IN BRIEF

Suppose the region 0 ≤ z ≤ L is occupied by a chiral STF that is uniformly inflitrated by
spherical nanoparticles. The permittivity dyadic of infiltrated thin film may be stated as [1, Ch.
9]

ε(r) = ε0 Sz
(h, z,Ω) •S

y
(χ) • εo

ref
•S−1

y
(χ) •S−1

z
(h, z,Ω) , 0 ≤ z ≤ L . (1)

In this equation, ε0 = 8.854 × 10−12 F m−1 is the free–space permittivity; εo
ref

= εa uzuz +

εb uxux + εc uyuy is the reference relative permittivity dyadic, with ux, uy and uz are cartesian
unit vectors; the tilt dyadic S
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involves 2Ω as the structural period; and the parameter h = 1 for structural right-handedness
and h = −1 for structural left-handedness. The ratio L/Ω is generally taken to be an integer
for theoretical research.

The three scalars εa,b,c have to be predicted by a microscopic-to-continuum approach. The
application of a local-homogenization model for STFs [1, Ch. 6] proceeds as follows. Suppose
that a material of relative permittivity ε1 is deposited using a PVD process [2] as a chiral STF
of thickness L, with f1, (0 < f1 < 1), being the volume fraction occupied by the deposited
material. The parameters Ω, χ and h are fixed during the deposition process along with f1.
Next, let the film be infiltrated uniformly by nanoparticles of a metal of relative permittivity ε2,
the corresponding volume fraction being denoted by f2, (0 < f2 < 1). The void regions of the
infiltrated thin film are vacuous and their volume fraction is denoted by f3 = 1 − f2 − f3 such
that 0 < f3 < 1. Thus, the metal-infiltrated chiral STF is a three-constituent composite mate-
rial [17], in contrast to a fluid-infiltrated chiral STF which can be treated as a two-constituent
composite material [4, 18].

In the local-homogenization model, the deposited material is supposed to be present in the
form of electrically small ellipsoids with a transverse aspect ratio γt somewhat larger than unity
and a slenderness ratio γs >> 1; i.e., every nanowire is a string of ellipsoidal sausages. The
infiltrant metal is assumed to be present in the form of electrically small spheres, and the void
regions are also thought of as electrically small spheres. The infiltrated film is divided into thin
sections in which all the ellipsoids are identically oriented, and the Bruggeman equation

f1 a1
+ f2 a2

+ f3 a3
= 0 (3)

is solved. Here,

a
j

= ε0

(
εj I − εo

ref

)
•

[
I + iωε0Dj

•

(
εj I − εo

ref

)]−1

, j = 1, 2, 3, (4)
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are polarizability density dyadics; the depolarization dyadics are given by [10]
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0 is the null dyadic; I is the identity dyadic; and ε3 = 1. Equation (3) has to be solved
numerically for εo

ref
.

The plane wave incident on the chiral STF is delineated by the electric field phasor [1]

Einc(z) =

(
aL

is− p+√
2

− aR
is + p+√

2

)
eik0z cos θ eik0(x cos φ+y sin φ) sin θ , z ≤ 0 , (7)

where aL and aR are the known amplitudes of the left- and the right-circularly polarized (LCP
and RCP), respectively; the vectors s = −ux sinφ+uy cosφ and p± = ∓ (ux cosφ+ uy sinφ)
cos θ + uz sin θ are of unit magnitude; the propagation vector of the incident plane wave
makes an angle θ ∈ [0, π/2) with respect to the +z axis, and is inclined to the x axis in
the xy plane by an angle ψ ∈ [0, 2π); and k0 = ω

√
ε0µ0 is the free-space wavenumber with

µ0 = 4π × 10−7 H m−1 as the free-space permeability. The free-space wavelength is denoted
by λ0 = 2π/k0. The electric field phasors associated with the reflected and transmitted plane
waves, respectively, are expressed by [1]

Eref (z) =
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(8)
and
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The amplitudes rL,R and tL,R indicate the as-yet unknown strengths of the LCP and RCP
components of the reflected and transmitted plane waves.

Numerical techniques to determine rL, rR, tL and tR in terms of aL and aR have been
described elsewhere in detail [1,19,20]. Those techniques involve the solution of a 4×4 matrix
ordinary differential equation and yield the reflection and transmission coefficients that appear
as the elements of the 2×2 matrixes in the following relations:

[
rL
rR

]
=

[
rLL rLR

rRL rRR

] [
aL

aR

]
,

[
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tR

]
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[
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] [
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]
. (10)

Co–polarized coefficients have both subscripts identical, but cross–polarized coefficients do not.
The square of the magnitude of a reflection or transmission coefficient is the corresponding re-
flectance or transmittance; thus,RLR = |rLR|2 is the reflectance corresponding to the reflection
coefficient rLR, and so on. The principle of conservation of energy mandates the constraints
RLL + RRL + TLL + TRL ≤ 1 and RRR + RLR + TRR + TLR ≤ 1, the inequalities turning
to equalities only in the absence of dissipation in the region 0 < z < L.

The outlined approach to predict the reflectances and transmittances requires calibration
against experimental results. Whereas h, Ω and L are set during PVD, and χ can be ascertained
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Fig. 1. ∆R versus λ0 for ε1 = 5, f1 = 0.5, Ω = 200 nm, L = 32Ω, χ = 30◦, φ =
0◦, and θ = 10◦. The volume fraction of the infiltrated metal is 0 (solid), 0.0025 (dotted),
0.005 (dash-dotted), 0.0075 (dash-dot-dotted), or 0.01 (dashed). (a) ε2 = −9.98 + 0.85i,
(b) ε2 = −17.4 + 2.25i. Similar results were obtained with ε2 = −3.12 + 19.2i (iron at
λ0 = 610 nm [13]).

using scanning electron microscopy, spectrums of the reflectances and transmittances of some
uninfiltrated chiral STFs need to be used to choose values of γs and γt [18]; furthermore, ε1
may have to be adjusted somewhat from the known value of the bulk relative permittivity of
the nanohelix material [18]. Next, comparison against the spectrums of the reflectances and
transmittances of some metal-infiltrated chiral STFs may be necessary to adjust ε2 from the
known value of the thin-film relative permittivity [13] of the metal. These steps are not expected
to significantly affect qualitative conclusions that can be drawn from preliminary theoretical
studies.

3 NUMERICAL RESULTS AND DISCUSSION

Figure 1 shows computed values of the quantity ∆R = h(RRR−RLL+RLR−RRL) versus the
free-space wavelength λ0, when ε1 = 5 (typical of titanium oxide in the visible regime [12]),
f1 = 0.5, Ω = 200 nm, L = 32Ω, χ = 30◦, φ = 0◦, and θ = 10◦. The volume fraction f2 of
the metal varies from 0 to 0.01, and either ε2 = −9.98 + 0.85i (gold at λ0 = 610 nm [13]) or
ε2 = −17.4 + 2.25i (silver at λ0 = 610 nm [13]).

The large humps of ∆R centered at λ0 ≈ 631 nm for f2 = 0 in both Figs. 1(a) and (b)
indicate the circular Bragg phenomenon in the uninfiltrated chiral STF. The humps narrow and
tend towards a top-hat profile as L/Ω increases further. Also, the humps are more pronounced
for smaller values of θ than for larger values of θ; indeed, ∆R is known to vanish as θ increases
above, say, 45◦ [21].

As the volume fraction f2 of the metal increases, the circular Bragg regime in Fig. 1 executes
a redshift. Simultaneously, the peak value of ∆R in the circular Bragg regime also decreases.
These two findings suggest that chiral STFs can be used to sense the concentration of metal
particles in colloids and suspensions [22]. Furthermore, the redshift of the ∆R-peak is more
pronounced in Fig. 1(a) than in Fig. 1(b): on the average about 4000 nm per unit volume
fraction (UVF) for gold nanoparticles, and about 2000 nm UVF−1 for silver nanoparticles.
Additionally, the diminishment of the ∆R-peak is enhanced in Fig. 1(a) in relation to Fig. 1(b).
These observations suggest that chiral STFs may also be useful in sensing the type of infiltrant
metal.

A somewhat different device to sense the type and concentration of metal nanoparticles
emerges if the top half of the chiral STF were to be rotated about the z axis by 90◦ with respect
to the bottom half [4, 23]. The introduction thereby of the central 90◦–twist defect creates a
sharp dip in the spectrum of ∆R right in the center of the circular Bragg regime [24]. The
calculated spectrums of ∆R for this device are shown in Fig. 2.

Whereas variations in φ do not matter significantly [1], a value of θ somewhat different
from 0◦ may be preferable for designing a chiral-STF-based spectroscopic device to sense metal
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Fig. 2. Same as Fig. 1, except that the top half of the chiral STF is rotated about the z axis by
90◦ with respect to the bottom half.

nanoparticles by measuring ∆R. If dissipation inside the metal-infiltrated chiral STF remains
low enough, spectrums of ∆T = h(TLL − TRR + TRL − TLR) may also be similarly useful.

The experimentally recorded spectrums of ∆R are expected to be somewhat different from
the theoretical ones presented in Figs. 1 and 2 for three reasons: First, the relative permittivity
of the infiltrating metal (as also of the nanohelix material) is frequency-dependent. If necessary,
that feature can be incorporated in the local-homogenization model. Second, some fluid may
also have to be inserted along with the metal nanoparticles in the void regions of chiral STFs.
That feature too can be taken into account in the local-homogenization model. Third, the metal
nanoparticles have been assumed to infiltrate the chiral STF uniformly, which may not be com-
pletely realistic. However, the volume fraction of the metal is going to be low enough that a
somewhat nonuniform distribution may not have significant consequences.

Metal nanoparticles are being used for a variety of applications such as catalysis, nanoplas-
monics, and biosensing [25]. Suspensions and colloids of metal nanoparticles would need to be
made for infiltrating STFs [16]. This communication is expected to be of use for the metrol-
ogy of nanoparticles. It also provides a route for post–deposition engineering of the optical
responses of STFs.
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