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Abstract. An automated algorithm and methodology is presented to
identify tumor-tissue morphologies based on broadband scatter data
measured by raster scan imaging of the samples. A quasi-confocal
reflectance imaging system was used to directly measure the tissue
scatter reflectance in situ, and the spectrum was used to identify the
scattering power, amplitude, and total wavelength-integrated inten-
sity. Pancreatic tumor and normal samples were characterized using
the instrument, and subtle changes in the scatter signal were encoun-
tered within regions of each sample. Discrimination between normal
versus tumor tissue was readily performed using a K-nearest neighbor
classifier algorithm. A similar approach worked for regions of tumor
morphology when statistical preprocessing of the scattering param-
eters was included to create additional data features. This type of
automated interpretation methodology can provide a tool for guiding
surgical resection in areas where microscopy imaging cannot be real-
ized efficiently by the surgeon. In addition, the results indicate impor-
tant design changes for future systems. © 2009 Society of Photo-Optical Instru-
mentation Engineers. �DOI: 10.1117/1.3155512�

Keywords: automatic classification; tumor; necrosis; confocal reflectance imaging;
scatter; feature extraction; K-nearest neighbor �KNN�.
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Introduction
urgical microscopes are becoming more advanced all the

ime, and while there is great promise in their use, the prob-
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4942200877; E-mail: garciapb@unican.es
ournal of Biomedical Optics 034034-
lem still remains that the diffuse view seen by the surgeon
does not allow analysis of the microscopic morphology of the
tissue reliably. Many studies have looked at possible inclusion
of color filtering,1,2 polarization-based imaging,3,4 or spectro-
scopic channel analysis5 in order to try and enhance the con-
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rast at the margin between confirmed tumor and surrounding
ormal tissues. The creation of a tool that provides better
elineation of the tissue at the microscopic level, with real-
ime viewing of the signal, in situ, would be a great asset, and
herefore, it could gain clinical adoption readily. In this study,
ne approach to imaging tissue scatter spectra is used6 in con-
unction with an automated classification approach to imag-
ng.

Scatter analysis of cells and tissues accomplished by
ngle-resolved or coherence-based methods has proved suc-
essful in the quantification the subcellular origin of certain
eatures of tissue.7–12 The measurement can be robust, and
hanges in scatter spectra are related to pathologic structures
hat occur in the tissue; and thus, measurement of this could
rovide a unique tool for guiding surgical resection if a way
as developed to help the surgeon in data reduction and dis-
lay in real time.

A raster-scanning confocal reflectance imaging system to
irectly quantify tissue scatter in situ was previously designed
nd tested in tumor tissues.6 In addition, an attempt to estab-
ish a correlation between scatter changes and tissue mor-
hologies was performed. The main conclusions of this study
ere that changes are subtle and the data are multiparametric.
herefore, an automated methodology to classify the encoun-

ered scatter changes according to their tissue subtypes is re-
uired before proceeding to clinical studies. An automated
nterpretation into what the signal means relative to the pa-
hology has been designed here.

The analysis was done in stages, with the first aim being
he development of a methodology able to perform accurate
umor versus normal tissue discrimination, allowing reliable

argin detection. However, the quantification of the scatter-
ng coefficient heterogeneity within tumor is also critical to
reatment planning, because tumors can be extremely hetero-
eneous in terms of their fibrocystic and necrotic changes.
hus, the study here was done in these two stages and the
utomated identification process is described in detail for
ach.

ig. 1 �b� Scattered amplitude, A; �c� scattering power, b; and �d�
verage scattered irradiance, Iavg images of a pancreas tumor sample
a� showing five pathology-based regions of interest overlaid on it.
ournal of Biomedical Optics 034034-
2 Materials and Methods
2.1 Tissue Scatter Imaging

The scatter imaging system consisted of a weakly confocal
spectroscopic system having illumination and detection spot
sizes smaller than one mean scattering length �typically,
100 �m for tissue13�, and a raster-scanning platform built us-
ing linear translation stages. This spot size was specifically
chosen because it provides a scatter signal that does not have
significant contributions from multiple scattering, making it
essentially linearly dependent on the scatter coefficient. The
instrument operates in the 510–785 nm spectral waveband
with a broadband fiber-coupled tungsten-halogen light source.
An optical-fiber coupled to a CCD-based spectrometer was
used for confocal spectroscopic detection, with a spectral res-
olution of �1 nm. All spectral measurements were referenced
to a Spectralon-based reflectance standard, which removes in-
strumental spectral response from the sample measurements
and allows direct comparisons of the extracted scatter param-
eters across different samples. Average sample scanning time
was �1 h, mainly due to the use of mechanical stages for
raster scanning. Sufficient precautions were taken to prevent
the sample from drying during the measurement sequence. A
schematic and a more detailed description of the system can
be found in a previous paper.6

In the presence of significant local absorption, for very
small source-detector separations, the spectral reflectance can
be estimated by an empirical relationship as follows:

IR = A�−be−kc�dHbO2���+�1−d�Hb���� �1�

if the scattering and absorption coefficients are within the
typical range found in tissue.14,15 Parameter A is the scattering
amplitude, b the scattering power, k is the path length, c is a
constant proportional to the concentration of whole blood, and
d is the oxygen-saturation fraction. The extinction spectra of
oxygenated and deoxygenated hemoglobin, HbO2��� and
Hb���, were obtained from the Oregon Medical Laser Center
database.16 Absorption contributions from other chro-
mophores were assumed to be negligible in the waveband of
interest �from 510–785 nm�. Scattering parameters of interest
for tissue morphology identification are A and b, along with
the so-called average scattered irradiance, Iavg, which was cal-
culated by integrating IR over a spectral range ��1 ,�2�, which
avoids the hemoglobin absorption peaks.6 The Iavg parameter
is not entirely independent from A and b, but it provides a
quick and direct estimate of average scatter without the need
for an empirical model. Because, this parameter is not cor-
rected for the effects of absorption in regions where higher
than typical concentrations of blood are encountered,6 it could
present subtle absorption-related features, in addition to the
purely scatter-related features A and b, which could improve
the accuracy of the discrimination algorithms. However, it
should be noted that, in the absence of parameters A and b,
Iavg alone has less value in terms of discriminating tissue
types because this sensitivity to local absorption could lead to
ambiguous situations where absorption artifacts are inter-
preted as scatter features.

Human pancreatic tumor cells ASPC-1 were grown and
injected subcutaneously in the flank region of male mice. Tu-
mors were harvested seven weeks after injection when they
May/June 2009 � Vol. 14�3�2
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easured 6–7 mm in diameter and 5–6 mm in thickness.
hen they were dissected into 4–5 mm thick sections and

maged using the mentioned scatter imaging system. In total,
ix tumor tissue sections harvested from four mice were im-
ged. After the measurement, the sample was routinely pro-
essed for histology evaluation by paraffin embedding, 4 �m
ectioning and H&E staining.6 The top full-view slide from
ach sample was used for pathologic analysis. A veterinary
athologist examined the H&E slides from each sample and
dentified several regions-of-interest corresponding to the ob-
erved tissue subtypes. These were classified under three ma-
or groups, namely, epithelium, fibrosis, and necrosis, with
onstituent subgroups: two distinct types of epithelial cells,
ccording to the exhibited nucleus to cytoplasm ratio, were
onsidered �low and high proliferation index� and regions ex-
ibiting fibrosis were classified into early, intermediate, and
ature fibrosis subgroups. Figure 1 shows an example of a

ancreas tumor sample, where five regions of interest are
hown overlaid on the scattered amplitude A, scattering power
, and average scattered irradiance Iavg images. Color bar
cales of the scattering parameters are shown on the right of
heir corresponding images. Region 1 shows LPI tumor cells
ith less cellular density compared to HPI tumor cells found

n region 2. Region 3 shows necrosis, and regions 4 and 5
how the early and intermediate stages of fibrosis, respec-
ively. Apart from the tumor tissue samples mentioned above,
–4-mm-thick tissue sections of normal pancreas were har-
ested from three male mice and were imaged using the scat-
er imaging system.

.2 Classification Methods

.2.1 K-nearest neighbors
he K-nearest neighbor �KNN� classifier17 consisted in the
ssignment of an unclassified vector using the k closest vec-

ig. 2 Schematic of the normal versus tumor discrimination by mea
onsidered a coordinate axis and the distance between points in this
ournal of Biomedical Optics 034034-
tors found in the training set. This approach can naturally deal
with multiclass data while some of the more advanced classi-
fiers, such as support vector machines �SVM�,18 require the
bridging of results from a combinatorial set of such classifiers
to simulate multiclass parameters.19 Using the KNN classifier,
both normal versus tumor sample segmentation and the dis-
crimination of pathologically distinct tumor regions were per-
formed using the same methodology.

A schematic of the KNN process for classifying normal
versus tumor tissue using three independent scatter-related pa-
rameters is depicted in Fig. 2. The map was populated by
points, each of which represents a tissue pixel with its own set
of scattering parameters. Every pixel inside the predefined
regions of interest was considered as a vector in a three-
dimensional space �hereinafter called feature space�, and it
was plotted in the map using the three numerical values of its
scattering parameters as the x ,y ,z coordinate values. Because
KNN is based on considering that similar data values should
belong to the same class or region, the normal tissue or tumor
in this case, then K pixels with the most similar scattering
parameters to an unclassified pixel were initially determined.
This similarity was estimated in terms of the Euclidean dis-
tance

D�p1,p2� = ��A1 − A2�2 + �b1 − b2�2 + �Iavg1 − Iavg2�2, �2�

where p1 and p2 are the two compared tissue pixel localiza-
tions, and A, b and Iavg stand for their scattering amplitude,
scattering power, and average scattered irradiance, respec-
tively. The unclassified pixel will be assigned to the most
numerous tissue type �normal or tumor� among the K closest
neighbors. Therefore, this classifier has only one independent
parameter, K or the number of neighbors, to consider. In the
proposed methodology, different values of the parameter K

e KNN classifier, where the three measurement parameters are each
an space then defines how similar or different they are.
ns of th
Cartesi
May/June 2009 � Vol. 14�3�3
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re evaluated. Figure 3 shows in more detail how the KNN
lassifier works for a fixed value of parameter K �K=10�. The
nknown black tissue pixel localization needs to be assigned
ither to tumor or normal tissue classes, depicted with tri-
ngles and circles, respectively. The first step is to determine
he nearest ten �K=10� neighbors as given by Eq. �2�. The
esulting ten pixel localizations are the ones surrounded by
he red circle. As seven pixels out of ten are normal tissue and
nly three pixels are tumor, the outcome of the KNN classifier
ndicates that the unknown pixel corresponds to normal tissue.

Because KNN is based on distances between sample points
n the feature space, all parameters need to be normalized to
revent some features being more strongly weighted than
thers.19 Hence, all the three scattering parameters were unity
ormalized by the mean, before the classification process.

Segmentation of pathologically distinct tumor regions by
eans of the KNN classifier was similar to the normal versus

umor classification described above, except for the fact that
here were six different classes �low proliferation index and
igh proliferation index epithelium, necrosis, early, interme-
iate and mature fibrosis� and the unknown pixel was as-
igned to the most numerous class among these six.

Fig. 3 Example of pixel tissue-type determination �K=10�.

ig. 4 Block diagram of higher dimensional space constructions and
lassification procedure.
ournal of Biomedical Optics 034034-
2.2.2 Additional statistical data for the KNN
classification

As the number of features in a data set varies from 1 to �, any
classifier accuracy rises to a maximum and then falls back
asymptotically.20 In the segmentation of the tumor regions, the
six different tissue morphologies mentioned above have to be
discriminated from a data set that lies in a three-dimensional
space. Therefore, an additional feature extraction from the
actual data set is required to decrease the discrimination error.
In Ref. 19 a three-step automated breast-tissue classification
methodology is proposed. The breast area is first segmented
into fatty versus dense mammographic tissue, and the second
step precisely consists of the extraction of morphological fea-
tures by means of statistics calculations within the previously
segmented breast areas. Because segmentation does not apply
here �because that is the aim of the proposed methodology�, a
square spatial vicinity centered in each pixel location is de-
fined. Then the first four statistical moments �mean, standard
deviation, skewness, and kurtosis� of each scattering param-
eter are computed inside that vicinity region. Statistics are
either concatenated with the fitted scattering parameters them-
selves or can be used on their own to form higher dimensional
feature spaces. This procedure is graphically described in Fig.
4. Initially, each data point lies in a three-dimensional space
�the A−b− Iavg space�. Then the statistical moments of each
point are estimated inside a moving window centered in the

Fig. 5 Grouped scatter plots for normal and tumor pixel localizations
in the three input data parameters, A−b− Iavg, �a� space and �b–d� its
corresponding two-dimensional spaces.
May/June 2009 � Vol. 14�3�4



p
d
t
1
s
t
s
T
e
a
d
s
r
w

s
s
t
t
w
s
i
c
t
t

F
n

F
i

Garcia-Allende et al.: Automated identification of tumor microscopic morphology…

J

ixel of interest. These moments on their own form a 12-
imensional space, whereas if they are concatenated with the
hree input parameters, each data point becomes a vector in a
5-dimensional space. The third and forth moments, the
kewness, and the kurtosis, respectively, measure the bias and
he probability of outlier occurrence, respectively, of each
cattering parameter distribution inside the defined window.
he behavior of the methodology in terms of the classification
rror is studied as a function of the number of neighbors but
lso as a function of the window size, where the latter is
efined as the side length of the squared vicinity region. The
tudy of KNN classification was completed with all the pa-
ameters for varying spatial window sizes, and an optimal
indow size was used for the final process.

In addition, a further study on the capability of both the
cattering parameters and their extracted statistics �mean,
tandard deviation, skewness, and kurtosis� to discriminate
he different tumor regions was then performed. In this study,
he sequential floating forward selection �SFFS� algorithm21

as used because it is widely applied to reduce the dimen-
ionality �i.e., the number of features� of spectral data prior to
nterpretation.22,23 When processing spectral data, the feature
alculates mean values at each one of the spectral bands and
he aim of SFFS in this case is to select the M spectral bands
hat best discriminate among the subject classes, out of the

ig. 6 Behavior of the methodology in normal versus tumor discrimi-
ation when the number of considered neighbors increases.

ig. 7 Normal and tumor pixel discrimination in normal samples us-
ng the three scatter measured parameters.
ournal of Biomedical Optics 034034-
total number N initial bands, so M �N. The discrimination
among the classes, or class separability, can be calculated
performing different statistical computations.22 The same fun-
damental is employed to sort the scattering parameters and
their statistical values according to their subtype discrimina-
tion capability. In this way, the first feature selected by the
algorithm will be the one with the greatest changes according
to the pathology. As in Ref. 22, the Bhattacharya statistical
distance was employed to measure these changes. Therefore,
the difference in a scattering parameter p, with p
=1,2 , . . . ,15, between two tissue subtypes, i and j, is given
by

Jij
p =

1

4
�� j − �i�T��i + � j�−1�� j − �i� +

1

2
ln� ��i + � j�

2���i� · �� j��1/2	 ,

�3�

where �i and 
i are the mean and the variance matrix of p for
tissue subtype i. Because there are six different tissue sub-
types, the globlal class separability measurement, J, requires
one to calculate the difference between every two subtypes

J = 

i=1

6



j=i+1

6

PiPjJij , �4�

where Pi is each subtype probability and Jij is the distance
between subtypes i and j, as stated in Eq. �4�.

Fig. 8 Normal and tumor pixel discrimination in tumor samples using
the three scatter measured parameters.
May/June 2009 � Vol. 14�3�5
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.3 Quantitative Evaluation of Tissue Discrimination
Capability

n order to accurately estimate the performance of the dis-
rimination methodology a threefold cross-validation tech-
ique or procedure24,25 was applied both in the tumor versus
ormal and tumor region discrimination. A total of
6,599 pixels within the regions of interest of three normal
amples and 3660 pixels within the regions of interest of five
umor samples were considered. This data set was divided
nto three nonoverlapping sets containing 6653 data points
ach �5533 of normal tissue and 1120 of tumor�. Two of these
ets were employed as the training set, and the other one, the
o-called validation set, was used to calculate the error of the
lassifier. The latter is mathematically given by

Table 1 Quantitative measurement of tissue-typ

Tumor
sample no.

Number
of pixels

Numbe
masked

1 5476 689 �12

2 5893 290 �4.

3 8450 1020 �1

4 6900 406 �5.

5 5966 727 �12

Total no. of tumor pixels 32685 3132 �9

Normal sample no.

1 9428 358 �3.

2 9293 192 �2.

3 9613 211 �2.

Total no. of normal pixels 28334 761 �2.

Table 2 Overall confusion matrix in tumor sub
A-b-Iavg space.

LPI
epithelium

HPI
epithelium

LPI epithelium 1247 2

HPI epithelium 0 785

Necrosis 0 6

Early fibrosis 5 0

Intermediate fibrosis 5 0

Mature fibrosis 0 0
ournal of Biomedical Optics 034034-
�% =
Number of misclassified pixels in the validation set

Total number of pixels in the validation set

�100, �5�

where misclassification means that the tissue or tumor type
assigned in an automated manner to that pixel localization
does not match the pathologist criterion. This procedure is
repeated three times, each time with different training and
validation sets. Finally, the estimated performance of the clas-
sifier was calculated by averaging the three resulting errors.

Pixels corresponding to locations where the scatter data
could not be reliably measured were tagged as masked pixels.
These pixels were neither included in the training nor the

imination.

Expert-based
classified
pixels

Correctly
identified
pixels

Missclassified
pixels

539 539 0

1035 1035 0

� 1277 1277 0

173 173 0

637 628 9

3661 3652 9

6446 6446 0

6637 6637 0

5498 5498 0

18581 18581 0

scrimination in the three input data parameters,

crosis
Early
fibrosis

Intermediate
fibrosis

Mature
fibrosis

0 1 1

0 0 0

0 0 0 0

302 0 0

0 454 0

0 0 229
e discr

r of
pixels

.58%�

92%�

2.07%

88%�

.19%�

.58%�

80%�

07%�

19%�

69%�
type di

Ne

0

14

61

0

0

0
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alidation sets of the cross-validation procedure.

Results
.1 Tumor versus Normal Tissue Discrimination
igure 5 shows the actual three-dimensional map representing

he pixel locations in the A-b-Iavg space �Fig. 5�a�� and its
hree corresponding two-dimensional maps: A versus Iavg
Fig. 5�b�� A versus b �Fig. 5�c�� and b versus Iavg �Fig. 5�d��.
ormal pixels appear well grouped, whereas a remarkable

preading is observed in the scattering parameters of tumor
ixels.

Figure 6 depicts the behavior of the KNN algorithm in the
iscrimination of normal and tumor tissue pixel locations as a
unction of the number of considered neighbors. Classification
ccuracy should be expected to increase with the number of
eighbors because this reduces the influence of outliers �i.e.,
raining data points assigned to a wrong class�. There were no
utliers here because the distinct sample regions were seg-
ented as indicated by the pathologist. This absence of out-

iers, together with the spreading of tumor scattering param-
ters, caused an increase in the classification error percentage
ith the number of neighbors. This influence of the scattering
arameter spreading on classification has been proved, em-
loying as training set those pixels whose scattering param-
ters are close to the mean of each parameter and an indepen-
ency of error probability on the number of neighbors has
een obtained. Finally, discrimination results for all pixel lo-

ig. 9 Grouped scatter plots for all tumor sub-types in the A−b− Iavg
a� space and �b–d� its corresponding two-dimensional spaces.
ournal of Biomedical Optics 034034-
cations in both normal and tumor samples, while considering
only one neighbor, are presented in Figs. 7 and 8. An absolute
correlation was achieved between automatic and expert-based
classification within the predefined regions of interest. In fact,
the three normal samples in Fig. 7 were entirely correctly
classified as well as the four tumor samples in Fig. 8. Only
some errors are encountered within the regions of interest in
the fifth tumor sample. A quantitative measurement of tissue-
type discrimination, including percentages of pixels lost as
masked pixels �inside the samples� and number of correctly
identified localizations per sample is presented in Table 1.
Tissue discrimination capability of the approach is, however,
measured in terms of the quantities presented in Fig. 6 be-
cause they are obtained through the cross-validation proce-
dure described before, which removes the dependency of clas-
sification results on the training or test sets.

3.2 Segmentation of Pathologically Distinct Tumor
Regions

Figure 9 depicts some pixel localizations of the tumor
samples in the A-b-Iavg space �Fig. 9�a�� and its three corre-
sponding two-dimensional maps: A versus Iavg �Fig. 9�b��, A
versus b �Fig. 9�c�� and b versus Iavg �Fig. 9�d��. For visual-
ization purposes only, those tumor pixels whose scattering
parameters were within the interval p� �p̄−�p /3, p̄+�p /3�,
where p is each of the three scattering parameters and p̄ and
�p are respectively its mean and variance, are represented in
the map. As expected, because of the subtle changes in the
scattering parameters, pixel localizations do not appear well
grouped according to their tissue subtype. The behavior of the
KNN methodology in the discrimination of these pathologi-
cally distinct tumor regions as a function of the number of
neighbors is shown in Fig. 10, where an increase in the clas-
sification error percentage occurs as the number of neighbors
grows. Figure 11 displays the segmentation of the different
regions in tumor samples by means of the KNN with K=1,
while Table 2 summarizes the same information as a confu-
sion matrix, where each row represent the total number of
pixel localizations in each tumor subtype �as defined by the
pathologist inside the regions of interest�. It seems that the
automated classification accurately imitates the regions-of-
interest identification process performed by the pathologist.
However, once generality on the training and test sets is at-
tained by means of the cross-validation procedure, an �9%
classification error occurs within these regions of interest, as
shown in Fig. 10. Statistical data, as described in Sec. 2.2,
was added to improve the performance of the methodology.

Fig. 10 Behavior of the KNN methodology in tumor subtype discrimi-
nation as a function of the number of neighbors.
May/June 2009 � Vol. 14�3�7
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Classification error percentages in both 12-dimensional
nd 15-dimensional spaces are depicted in Fig. 12, which
hows how accuracy decreases for window sizes smaller than
, because statistics do not provide discriminant information
nd, then, the error decreases as the window size increases, up
o a size of 12. In Fig. 12, a null window size means that no
tatistics calculation is performed �i.e., only the scattering pa-
ameters are employed in the discrimination�. Classification
ccuracy is slightly better when statistics are concatenated
ith the scattering parameters. Therefore, this is the consid-

red case in the study on the number of neighbors. Figure 13
hows again that the performance of the methodology de-
reases with the number of neighbors.

.2.1 Classification with spatial statistical data
included

igure 14 depicts the segmentation of one of the tumor
amples into its distinct tumor regions in three different cases:
mploying only the scattering parameters �three-dimensional
pace�, only their statistics �12-dimensional space� and both
f them concatenated �15-dimensional space�, while the cor-
esponding confusion matrices are summarized in Table 3.
he improvement in the correlation between automated and
xpert-based sample segmentation within the regions of inter-
st is barely perceptible. Sample boundary detection is signifi-
antly improved when statistics calculation is employed. Be-
ause when only the scattering parameters were considered,
oundaries were improperly classified as mature fibrosis. The
egmentation of the other four tumor samples in their distinct
umor regions is presented in Fig. 15. These results are ob-
ained employing a 12-pixel window size, concatenating the
ew calculated statistical parameters and the fitted scattering

Fig. 11 Segmentation of tumor sa
ournal of Biomedical Optics 034034-
parameters, and their overall confusion matrix is presented in
Table 4. In this process, unclassified pixels were assigned to
the same class as the closest one in the training set. Window
sizes had to be as large as possible in such a way that the four
statistical moments became relevant, but also small enough to
assure that the moments are mostly computed for pixel local-
izations inside the same tissue subtype. A window size of
12 pixels assured the latter in most situations because it im-
plies a window side of �1.2 mm and, apart from that, clas-
sification error remains nearly constant for greater window
sizes.26

The subtype separability measurements through the SFFS
algorithm, as described in Sec. 2, were computed for the 15
features, the scattering parameters, and their statistics. The
first five features selected according to this criterion and as a
function of the window size are summarized in Table 5, where
p and �p are, as indicated before, the mean and variance of
the scattering parameter p, and Kp stands for its kurtosis mo-
ment. For smaller window sizes, which means that mostly
vicinity regions will be within the same tissue subtype, the
mean scattering power is always selected as the most dis-
criminant feature.

4 Discussion
A strong correlation exists between the automated and expert-
based normal versus tumor tissue segmentation of the samples
as is seen in Figs 7 and 8. It is then justified to conclude that
a consistent trend exists in the scattering parameters across
these types. In the previous study without automated classifi-
cation of the data;6 there was no obviously consistent trend in
the scatter power images across the different tumor samples,

in their distinct subtypes �K=1�.
mples
May/June 2009 � Vol. 14�3�8
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Table 3 Tumor sample number 2 confusion matrices in tumor subtype discrimination in the distinct
feature spaces: �a�, scattering parameter feature space �b� statistical data, and both scattering parameters
and their statistical values.

LPI
epithelium

HPI
epithelium Necrosis

Early
fibrosis

Intermediate
fibrosis

Matiure
fibrosis

LPI epithelium 279 0 0 0 0 0

HPI epithelium 0 187 0 0 0 0

Necrosis 0 0 183 0 0 0

Early fibrosis 5 0 0 269 0 0

Intermediate fibrosis 5 0 0 0 107 0

Mature fibrosis 0 0 0 0 0 0

�a� 3 variables

LPI epithelium 279 0 0 0 0 0

HPI epithelium 0 187 0 0 0 0

Necrosis 0 0 183 0 0 0

Early fibrosis 0 0 0 274 0 0

Intermediate fibrosis 0 0 0 0 112 0

Mature fibrosis 0 0 0 0 0 0

�b� 12 variables

LPI epithelium 279 0 0 0 0 0

HPI epithelium 0 187 0 0 0 0

Necrosis 0 0 183 0 0 0

Early fibrosis 0 0 0 274 0 0

Intermediate fibrosis 0 0 0 0 112 0

Mature fibrosis 0 0 0 0 0 0

�c� 15 variables
Table 4 Overall confusion matrix in tumor subtype discrimination in the 15-dimensional feature space
�K=1�.

LPI
epithelium

HPI
epithelium Necrosis

Early
fibrosis

Intermediate
fibrosis

Mature
fibrosis

LPI epithelium 1251 0 0 0 0 0

HPI epithelium 0 799 0 0 0 0

Necrosis 0 0 616 0 0 0

Early fibrosis 0 0 0 307 0 0

Intermediate fibrosis 0 0 0 0 459 0

Mature fibrosis 0 1 0 0 0 228
ournal of Biomedical Optics May/June 2009 � Vol. 14�3�034034-9
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hile scatter amplitude exhibited a high corrupting influence
ecause of coupling artifacts leading to the integrated scatter
ntensity variations. As a consequence, prior to the current
ork, this data set has been insufficient to achieve a proper

dentification of the different tumor regions. An �9% classi-
cation error was then encountered in the interpretation of
catter changes according to their tissue subtypes without any
tatistical preprocessing. The concatenation of the scattering
arameters of a pixel localization with their first four statisti-
al moments or, even the employment of the statistical values
n their own, allowed the achievement of a classification error
f �1%. This presumably indicates that it is necessary to
mooth pixel-to-pixel variations to achieve reliable tumor re-
ion segmentations. This is a critically important finding be-
ause it means that in a raster-scanning approach the pixel-to-
ixel variations could be high, but may actually not be useful
nformation if the sampling volume is too small to provide a
onsistently smooth signal through a given tissue subtype.

A great increase in the classification error was expected for
arge window sizes because it was assumed that distinct tumor
egions were combined inside the same spatial vicinity region.
owever, classification error remains nearly constant unless

he entire image was considered as one window and, then, as
xpected, the error matched the one achieved only when the
hree initial scattering parameters were considered. This is
erhaps due to the fact that the distributions of moments are
ominated by pixel localizations within the window that be-
ong to the same tissue type. The proposed solution was to
mploy meaningful window sizes from the tissue morphology
oint of view. To assure this, the histograms of the sizes,
idth, and length, of the regions of interest identified by the
athologist were obtained. Most of them were shorter than
5 pixels, and therefore, larger window sizes would not be
dvisable to attain relevant statistical information.

As shown in Table 5, the mean region values of scattering
arameters turned out to be the strongest data set for classifi-
ation of the distinct tumor pathologies. This agrees with the
mprovement achieved in the classification error by the intro-
uction of statistical calculations and confirms that pixel-to-
ixel variations in the remitted spectra need to be minimized
or reliable classification approaches. This has to be taken into
onsideration for future system improvements. In addition,
hen small window sizes are employed in the statistics cal-

ulation, the mean scattering power turned out to be the stron-
est data feature for discrimination. It is believed from the
revious study6 that the scatter power should be more reliable
han the remitted intensity because it is independent of cou-
ling errors in the imaging system. All acquired scatter im-

ig. 12 Behavior of the KNN methodology in the higher dimensional
paces as a function of the window size employed in statistics calcu-
ation �K=1�.
ournal of Biomedical Optics 034034-1
ages were reflectance corrected to minimize referencing arti-
facts, but average scattered irradiance and scatter amplitude
images are not entirely free from such artifacts due to small
sample positioning and other instrumental issues. The scatter
power is related to the wavelength-dependent scatter function
and hence is relatively free from referencing artifacts. A math-
ematical proof of this intuitive point of view has been pro-
vided by the SFFS study on the discrimination capability, and
as a consequence, future system designs have to pursue more
accurate fitting of this particular parameter.

5 Conclusions
This study reports the development of an automated interpre-
tation methodology of scatter changes in tissue. The capability
of the methodology to mimic the identification of regions of
interest performed by a veterinary pathologist has been shown
in two different situations: discrimination between normal and
tumor tissue and segmentation of pathologically distinct tu-
mor regions. In both of them, a correlation between auto-
mated and expert-based segmentation of 	99% correlation
error has been achieved across all regions identified and all
samples used in the study.

Calculations of the statistical moments of these scattering
parameters in a vicinity region of every pixel location were
required to achieve a reliable discrimination of the distinct
tumor regions. That means that future system designs should
somehow try to minimize pixel-to-pixel variations. In order to
justify this requirement, the SFFS algorithm has been used to
determine which parameters exhibited more consistent trends
across the different tumor subtypes. For physically reasonable
window sizes, mean scattering parameters are more signifi-
cant than the parameters themselves, as shown in Table 5,
which explains the increase in tumor region determination
accuracy. Statistical calculations could be avoided by includ-
ing polarization measurements because this would give us
more degrees of freedom. However, the opposite problem
could also be encountered. As mentioned above, three scatter
measurements were initially found to be insufficient to
achieve reliable classifications and this situation was solved
including a feature extraction procedure based on the spatial
statistical values calculated from preprocessing of the data. If
polarization is included in the measurements, the opposite
situation could be encountered. Some kind of dimensionality
reduction process would be demanded in order to retain us-
ability in real time. The feasibility of the SFFS algorithm to
extract the physically relevant parameters has been demon-

Fig. 13 Classification error dependence on the number of neighbors,
when both scattering parameters and their statistics were employed
for discrimination.
May/June 2009 � Vol. 14�3�0
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ig. 14 Qualitative comparison among segmentations of one tumor sample in the distinct feature spaces are shown �scattering parameter feature
pace, statistical data, and both scattering parameters and their statistical values�.
Table 5 Sorting of the scattering parameters and their statistics as a function of their tissue subtype
discrimination capability.

Window size 1 2 3 4 5

30 �A Ā KIavg b̄ Iavg

28 �A Ā KIavg
Iavg b̄

26 �A Ā KIavg
Iavg b̄

24 �A Ā KIavg
Iavg b̄

22 Kb KIavg
Iavg �A Ā

20 Kb KIavg
Iavg b̄ Ā

18 b̄ Iavg Ā Kb �A

16 b̄ Iavg �Iavg Ā KIavg

14 b̄ Iavg �Iavg Ā KIavg

12 b̄ Iavg Ā Iavg �A

10 Ā Iavg Ā Iavg �A

8 b̄ Ā Iavg �A Iavg

6 b̄ Ā Iavg �A �Iavg

4 b̄ Ā Iavg �A Iavg

2 b̄ Ā Iavg �A Iavg
ournal of Biomedical Optics May/June 2009 � Vol. 14�3�034034-11
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trated in the discrimination capability study, and therefore, it
ould be a suitable candidate to perform this dimensionality

eduction. Finally, it is worth it to reiterate that the perfor-
ance of this discrimination capability study concluded that

he mean scattering power was the strongest data set for dis-
rimination. Hence, future system improvements should focus
n an approach that provides the most accurate fitting of this
mportant parameter. Future work studying analysis of larger
amples and a wider variety of tumors is ongoing.
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