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Abstract. Atrial fibrillation �AF� is the most common irregular heart
rhythm and the mortality rate for patients with AF is approximately
twice the mortality rate for patients with normal sinus rhythm �NSR�.
Some research has indicated that myocardial fibrosis plays an impor-
tant role in predisposing patients to AF. Therefore, realizing the rela-
tionship between myocardial collagen fibrosis and AF is significant.
Second-harmonic generation �SHG� is an optically nonlinear coherent
process to image the collagen network. We perform SHG microscopic
imaging of the collagen fibers in the human atrial myocardium. Uti-
lizing the SHG images, we can identify the differences in morphology
and the arrangement of collagen fibers between NSR and AF tissues.
We also quantify the arrangement of the collagen fibers using Fourier
transform images and calculating the values of angle entropy. We
indicate that SHG imaging, a nondestructive and reproducible
method to analyze the arrangement of collagen fibers, can provide
explicit information about the relationship between myocardial fibro-
sis and AF. © 2010 Society of Photo-Optical Instrumentation Engineers.
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Introduction

trial fibrillation �AF� is the most common arrhythmia and
ffects more than 2.3 million Americans. Patients with AF
uffer from many risks, such as tachycardia-induced atrial
ysfunction, cardiomyopathy, thromboembolism, and stroke.1

roper balance between synthesis and degradation of extracel-
ular matrix molecules is critical for maintaining normal
hysiologic function. In the human atrial myocardium, the
ajor component of the extracellular matrix is collagen
bers.2 Recently, many studies3–5 have observed structural re-
odeling of the extracellular collagen matrix and collagen
brosis in atrial diseases such as AF. However, the detailed
echanism of AF is still not fully realized and limited reports

re available on the relationship between myocardial fibrosis
nd AF.

Characteristic changes in the organization of fibrillar col-
agen are known to occur in several diseases6,7 and could po-

ddress all correspondence to: Chi-Kuang Sun, National Taiwan University,
hotonics and Optoelectronics R319, 2nd EE Building, 1 Roosevelt Road Sec-
ion 4 Taipei, 10617 Taiwan. Tel: 886-2-33665085; Fax: 886-2-33663614;
-mail: sun@cc.ee.ntu.edu.tw.
ournal of Biomedical Optics 026002-
tentially serve as an early diagnostic marker. We propose that
collagen fibrosis in the human atrium myocardium is involved
in the development of AF. It is desired to find a simple and
reproducible method to obtain information concerning col-
lagen fibers for quantitative analysis. Many methods can be
used to quantify collagen fibers, such as the weight measure-
ment method8 and the colorimetric method.9 But these meth-
ods necessitate destroying the structure of the tissues and the
tissues can not be used for further analysis �for example,
pathohistological analysis�. Optical imaging techniques, such
as confocal microscopy10 and second-harmonic generation
�SHG� microscopy11 can quantify collagen fibers as well.
However, utilizing the confocal microscopy, the tissues must
be stained and are still destroyed. Non-fluorescence-based
SHG microscopy uses IR excitation wavelengths that mini-
mize the energy deposition and increase the tissue penetration
while maintaining intrinsically high spatial resolution without
staining.12 Since 1986,13 SHG has emerged as a powerful bio-
logical imaging modality for biotissues.14–24 However, using
SHG microscopy for myocardium observation has never been

1083-3668/2010/15�2�/026002/6/$25.00 © 2010 SPIE
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eported. In this paper, we apply SHG microscopy for col-
agen fiber imaging in human atrial myocardium samples. Uti-
izing the SHG images, we can identify the differences in

orphology and arrangement of collagen fibers between nor-
al sinus rhythm �NSR� and AF tissues. We further quantify

he arrangement of the collagen fibers by using Fourier trans-
orm images and calculating the values of angle entropy. Our
tudy indicates that collagen fibrosis in human atrium myo-
ardium is indeed involved in the development of AF. Our
tudy also demonstrates that SHG imaging, a nondestructive
nd reproducible method to analyze the arrangement of col-
agen fibers, can provide explicit information about the rela-
ionship between myocardial fibrosis and AF and can serve
otentially as an early diagnostic marker for AF.

Methods and Materials
.1 SHG Microscopy
he first biological imaging experiment using SHG micros-
opy to study the orientation of collagen fibers was done by
reund et al.13 in 1986. Recently, SHG has been applied in
ifferent biotissues consisting of tendon,14 bone,15 tubulin,16,17

uscle fibers,18–23 zona pellucida,24 strain in enamel rods,25

nd polyhedral inclusion bodies of viruses.26 Collagen fiber
as a highly crystalline triple-helix structure that is not cen-
rosymmetric. Thus, SHG microscopy is an ideal tool to ob-
erve collagen fiber structure.16,18,27–31 The heart structure is
lso an interesting subject for SHG imaging to increase un-
erstanding of heart disease, including heart valves,32,33 and
ardiac myocytes.34–36 In the human atrial myocardium, the
ajor components are cardiac muscles and collagen fibers;

ence, we utilized SHG microscopy to image the human atrial
yocardium. Figure 1 shows the experimental setup of the
HG microscope. The excitation light source was a home-
uilt Cr:forsterite laser that operates at 1230 nm with a pulse
idth of 140 fs, a repetition rate of 110 MHz, and 450 mW
f average output. The Cr:forsterite laser was pumped by
0 W of 1064 nm light from a diode-pumped Nd:YVO4 la-
er. All optics were modified to enable the passage of the
xcitation source light. We adapted the high-speed galvanom-
ter mirrors �GMs� inside the FV300 scanning system with a
X51 upright microscope and a high-numerical-aperture

NA� objective �LUMPlanFl/IR 60�/water/NA 0.90�, all
rom Olympus. Real-time SHG images can be obtained by
sing a photomultiplier tube �PMT�. CF is color filter to filter
he excitation light, DM is the dichroic mirror, and S is the

ig. 1 Schematic diagram of an SHG microscope: PMT, photomulti-
lier tube; CF, color filter; DM, dichroic mirror; S, sample.
ournal of Biomedical Optics 026002-
sample, which is mounted on the translation stage to form 2-D
sectioned images.

2.2 Fourier Transform Image Analysis
The Fourier transform is an important image processing tool
that has also been used to determine the orientation and an-
isotropy of the microstructure, such as collagen fibers.37–39

Many studies have combined SHG microscopy and a Fourier
transform to analyze the orientation or periodicity of the stud-
ied biological structures, such as skeletal muscle,40 corneal
tissues,41 and collagen gels.42 We Fourier transformed the
SHG images to obtain the spatial distribution characteristics
of collagen fibers in the human atrial myocardium. The ac-
quired SHG image is composed of 512�512 pixels and each
pixel can be considered as a spatial function f�x ,y�, represent-
ing the image intensity at a point �x ,y�, while its spatial Fou-
rier transform is defined by

F�u,v� =�
−�

� �
−�

�

f�x,y�exp�− i2��ux + vy��dx dy , �1�

where x and y represent the spatial coordinates of the image;
and u and v indicate the spatial frequency components along
x and y, respectively, in the Fourier domain. Therefore, each
spatial Fourier transform function F�u ,v� is regarded as a
pixel intensity value at a point �u ,v� to form a Fourier image
�512�512 pixels� in the Fourier domain. Moreover, to ob-
tain more explicit information about collagen arrangement,
we calculated the angle entropy from the Fourier transform
images. The probability of the distribution function Ps is
given by

S��� =� F��,��d� , �2�

where the distribution function S in the Fourier domain in
polar coordinates is defined by

PS��� =
S���

�S���d�
. �3�

Then the angle entropy H is calculated as

H = −� PS��� ln Ps��� d� . �4�

Finally, the angle entropy can be obtained. We get the Fourier
images and the values of the angle entropy according to pre-
ceding equations and these analyses were performed with
MATLAB.43

2.3 Materials
The study group consists of 10 patients with AF and 10 pa-
tients with NSR. All patients received open heart surgery with
valvular heart disease and their age was more than 18 years.
Exclusion criteria include patients with cardiogenic shock, pa-
tients receiving major surgery within past 6 weeks, patients
with concomitant infection, patients with abnormal liver func-
tion, and pregnant women. Atrial tissues from all patients
were obtained from the right atrium and were cut into sections
March/April 2010 � Vol. 15�2�2
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ith about 5 mm thicknesses. The specimens were incubated
irectly into optimal cutting temperature �OCT� compound at
emperature −20 °C until we observed these samples by us-
ng the SHG microscope at room temperature. The Ethics
ommittee of National Taiwan University Hospital approved

he study and all patients provided written informed consent.

Results and Discussion
.1 Epi-SHG Images of Human Atrial Myocardium
he human atrial myocardium samples for SHG imaging
tudy were received by open heart surgery and were cut into
ections with approximately 5 mm thicknesses. The heart
onsists of three layers: epicardium, myocardium, and en-
ocardium, and the cardiac muscles exist only in the myocar-
ium. Thus, by observing the collagen fibers and cardiac
uscles simultaneously, we can make sure that we observed

he collagen fibers in the myocardium, not in the epicardium
or in the endocardium. Because SHG is sensitive to collagen
bers and cardiac muscle fibers, the arrangement of collagen
bers in the atrial myocardium can be revealed by SHG im-
ges. Figures 2�a�–2�f� show the SHG images taken in the
trial myocardia from different patients with NSR. The or-
erly arranged collagen fibers can be found to be parallel to
he cardiac muscles in the same layer. We also can observe the
ifferent epi-SHG intensities between collagen fibers and
uscle fibers. The epi-SHG intensity from collagen fibers is

bserved to be about 3 to 10 times that from muscle fibers and
similar result in skeletal muscles were revealed due to phase

ig. 2 �a� to �f� SHG images of the atrial myocadia from patients with
SR. The arrangements of the collagen fibers �dashed arrows� are

egular and directional to a specific angle. The cardiac muscles �solid
rrows� can also be observed. �Scale bar: 50 �m�
ournal of Biomedical Optics 026002-
matching and the thickness of the tissues.44 In contrast, the
SHG images of the atrial myocardia from different AF pa-
tients are shown in Figs. 3�a�–3�f�. The collagen fibers are
found to be entangled and the arrangements in AF tissues are
less orderly than in NSR tissues. Clear differences in collagen
fiber arrangements between NSR and AF tissues can be re-
vealed by comparing Fig. 2 with Fig. 3.

3.2 Histological Results of the Human Atrial
Myocardium

After obtaining the SHG images of the atrial myocardium, the
specimens were fixed in formalin and were stained with Mas-
son’s trichrome. The sections of the atrial myocardium with
the Masson’s trichrome stain by using the bright-field micro-
scope are shown in Fig. 4�a� for NSR and in Fig. 4�b� for AF
tissues. The dashed and solid arrows indicate the positions of
the collagen fibers and the cardiac muscles, respectively.
From Fig. 4�a�, the collagen fibers in NSR tissues reveal or-
derly arrangement and are parallel to the cardiac muscles.
Figure 4�b� shows the entangled and disoriented arrangement
of the collagen fibers in AF tissues. The conclusion from the
histological results is consistent with the SHG images as
shown in Figs. 2 and 3 and shows that the structures of the
human myocardium, including collagen fibers and cardiac
muscles, can be revealed with SHG microscopy.

Fig. 3 �a� to �f� SHG images of the atrial myocadia from patients with
AF. The collagen fibers are found to be entangled and the arrange-
ments in AF tissues are less orderly than in NSR tissues. Collagen
fibrosis can be observed. �Scale bar: 50 �m�
March/April 2010 � Vol. 15�2�3
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.3 Fourier Transform Analysis
Fourier transform is an ideal tool to determine the orienta-

ion and anisotropy of the collagen fibers. Utilizing a Fourier
ransform to analyze SHG images, the arrangement of col-
agen fibers can be quantified without depending on the inten-
ities of the SHG images. We Fourier transformed the SHG
mages into the spatial frequency domain following Eq. �1�.
he epi-SHG signals from muscle fibers are weaker than

hose from collagen fibers and we want to analyze only the
ollagen fiber arrangement. Thus, we set a threshold value of
he SHG intensity, and the signals from muscle fibers can be
ltered before taking Fourier transform if the SHG intensities
re lower than the threshold value. The Fourier images of the
HG images of the atrial myocadia are shown in Fig. 5�a� for
SR and in Fig. 5�b� for AF tissues. As mentioned, the ar-

angement of the collagen fibers in NSR tissues is more or-
erly, hence the distribution of the Fourier image shows a
irectional pattern in Fig. 5�a�. The Fourier SHG image of AF
issues presents a nondirectional pattern due to randomized
rrangement of the collagen fibers, as exampled in Fig. 5�b�.

Furthermore, the arrangement of collagen fibers can be
uantified by calculating the angle entropy from the Fourier
ransform images. To obtain the differences of the collagen
ber arrangements between NSR and AF tissues, we calcu-

ated the angle entropy according to the formula in Sec. 2.2 to
uantify the arrangement of the collagen fibers in the atrial
yocardium. The total number of over 500 SHG images of
SR and AF tissues �279 data for NSR and 251 data for AF�

ig. 4 Sections of the atrial myocardium with the Masson’s trichrome
tain by using the bright-field microscope for �a� NSR and �b� AF
issues. The collagen fibers �dashed arrow� in NSR tissues show an
rderly arrangement and are parallel to cardiac muscles �solid arrow�.
he entangled and disoriented arrangement of the collagen fibers is
evealed in AF tissues and the results are consistent with SHG images.

ig. 5 Fourier transform images of the SHG images in atrial myocadia
or �a� NSR and �b� AF tissues. The arrangement of the collagen fibers
n NSR tissues is more orderly, hence the Fourier transform images
hows a directional pattern. In contrast, the Fourier transform images
n AF tissues present a nondirectional pattern due to randomized ar-
angement of the collagen fibers.
ournal of Biomedical Optics 026002-
were analyzed. The distribution of angle entropy is shown in a
histogram in Fig. 6, where the mean values of the analyzed
angle entropy for the NSR and AF tissues are 2.82�0.40 and
3.79�0.47, respectively. The entropy is a measure of the
disorder in the arrangement of the microstructure and the
higher the entropy the greater the disorder.45 Therefore, the
value of angle entropy indicates that the collagen fiber ar-
rangement in AF tissues is much more disordered than in NSR
tissues. The result suggests that we succeeded in obtaining the
quantification of collagen fiber arrangement by using the Fou-
rier analysis of SHG images and the collagen fibrosis in the
atrial myocardium is implicated in the existence of AF.

4 Conclusion
We proposed that collagen fibrosis in the human atrium myo-
cardium is involved in the development of AF; thus, it was
significant to find a simple and reproducible method to obtain
the information about the collagen fibrosis. SHG could pro-
vide strong contrasts in the collagen fibers and cardiac muscle
fibers of the human atrial myocardium. Thus, the epi-SHG
intensities from collagen fibers are stronger than those from
muscle fibers and the different arrangements of collagen fibers
between NSR and AF tissues were revealed. Furthermore, we
quantified the collagen fiber arrangement by using a Fourier
transform and calculating angle entropy. The Fourier trans-
form images show the nondirectional and directional patterns
in AF and NSR tissues, respectively. By analyzing the Fourier
transform images, the angle entropy was calculated. As ex-
pected, the higher angle entropy was obtained in AF tissues.
We succeeded for the first time in quantifying the arrangement
of collagen fibers of the human atrial myocardium in normal
and disease states. These results indicate that the random ar-
rangement of collagen fibers in AF tissues and collagen fibro-
sis in the human atrium myocardium is involved in the devel-
opment of AF. Therefore, SHG microscopy can serve as a
noninvasive tool for collagen fibrosis imaging in the human
atrium myocardium and can be an ideal tool for AF diagnosis
in the future.
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