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Abstract. Videokeratometers and Scheimpflug cameras permit accu-
rate estimation of corneal surfaces. From height data it is possible to
adjust analytical surfaces that will be later used for aberration calcu-
lation. Zernike polynomials are often used as adjusting polynomials,
but they have shown to be not precise when describing highly irregu-
lar surfaces. We propose a combined zonal and modal method that
allows an accurate reconstruction of corneal surfaces from height
data, diminishing the influence of smooth areas over irregular zones
and vice versa. The surface fitting error is decreased in the considered
cases, mainly in the central region, which is more important optically.
Therefore, the method can be established as an accurate resampling
technique. © 2010 Society of Photo-Optical Instrumentation Engineers.
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Introduction
n the last few years, a large number of accurate devices for
easuring corneal morphology have appeared. Among them,

hose based on Placido rings and Scheimpflug cameras are the
ost widely used.1–7 These devices can provide height data of

he corneal surfaces that can be fitted to analytical surfaces
hrough polynomial expressions �modal approach�.8–10 These
an be later used for aberration calculation and ray trace
olving.11–13

Zernike polynomials are often used as adjusting polynomi-
ls, but they have shown to be not precise when describing
ighly irregular corneas,14–16 since they do not fit properly to
rregularities. In 2003, Smolek and Klyce14 concluded that
ernike polynomials did not fully characterize the surface fea-

ures that affect vision. Later, Klyce, Karon, and Smolek15

ound that using Zernike polynomials in normal eyes was ac-
eptable, but for eyes after corneal surgery or eyes with cor-
eal pathology such as keratoconus, the Zernike method fails
o capture all clinically significant higher-order aberrations.
urthermore, it is very difficult to assess a priori how many

erms are necessary to achieve an acceptable accuracy in the
ernike reconstruction for any given corneal shape.17

Common measuring devices are based in imaging tech-
iques. An image reflected from a pattern—linear or
nnular—is projected onto a charge-coupled device �CCD�
nd is digitally processed.18 From this information, a height
ap is obtained. Surfaces with radial structure do not fit well
ith squared detectors or matrices,19 since density of samples

n the azimuthal coordinate depends on the radial coordinate,
ue to the fact that the number of different angular samples in
he center of the matrix is lower than in the periphery. Unfor-

ddress all correspondence to: Julian Espinosa, Universidad de Alicante, De-
artment Optica Campus de San Vicente del Raspeig, P.O. Box 99, Alicante,
3690 Spain. Tel: 34-96-590-3400; E-mail: julian.espinosa@ua.es
ournal of Biomedical Optics 026022-
tunately, acquiring devices are based on squared CCD, and
little can be done to change this fact. Reconstruction methods
may consider such limitations and obtain the best possible
results. Traditional reconstruction of the optical surface with
Zernike polynomials20 does not pay attention to the particular
sampling distribution of the analyzed surfaces, and thus it
does not provide optimum results in the central area around
the apex, which is the most important zone under the optical
point of view. One of the main limitations of the polynomial
representation is that each term extends its influence over the
entire pupil.

The goodness of fit of a surface model strongly depends on
the number of samples and its distribution. Let us consider a
spherical-like surface given by height samples in Cartesian
coordinates. The number of points that contribute to the poly-
nomial fit is proportional to the area of the considered surface.
Thus the ratio between the number of samples included in an
external annular region defined between radii R1 and R2 and
the central part of aperture radius R1 is quadratic, i.e.,
�R2 /R1�2−1. The effect is not very important for a spherical
surface, but if the surface is affected by any irregularity in the
periphery, it determines the coefficients in the central optical
area, although the real effect of the irregularity on the retinal
image is limited. Therefore, the fitting error is distributed over
the entire surface, not just at those zones where the deforma-
tion is located.

B-spline polynomials are especially well suited for fitting
complex-shaped surfaces.21,22 They have the advantages of
being locally defined and having great flexibility, which al-
lows control of their smoothness and polynomial degree.23,24

In Ref. 25, the authors propose an alternative technique for
reconstructing the corneal shape from elevation data using
sets of radial basis functions �RBFs� in a modal approach.

1083-3668/2010/15�2�/026022/7/$25.00 © 2010 SPIE
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ue to the fast decay of RBFs, the modal approach exhibits
eatures of the zonal approach, eventually capturing small de-
ormations of the surface, which are missed by the polynomial
tting. As Ref. 25 states, we think that there is no unique or
est approach to corneal surfaces, and a combination of tech-
iques can be a good strategy.

Light distributions propagated from the cornea can be nu-
erically evaluated by means of a Fresnel propagation

lgorithm.26 Numerical calculation of convergent Fresnel pat-
erns through fast Fourier transform usually requires a large
umber of samples �4�106� to fulfil the Nyquist condition
round the focus.27 In Ref. 28, the authors present a simple
ethod that permits subsampling the Fresnel pattern while
aintaining the Nyquist condition, and thus preventing the

ppearance of aliasing effects in the calculation. Later, in Ref.
9, the authors proposed modifying the initial wavefront and
elaxing the Nyquist condition, thus giving a more efficient
umerical algorithm. Corneal height data sampling provided
y corneal topographers is still lower than the one imposed by
he Nyquist condition. Hence, we need a method that allows
n accurate resample of corneal height data.

In this work, we propose a zonal Zernike fitting �combina-
ion of zonal and modal approaches� of corneal height data. It
onsists of obtaining Zernike coefficients over local areas. A
ocal mask is applied on the surface, and polynomial fit is
one for this part of the surface. The coefficients so obtained
ave no physical meaning due to the fact that Zernike poly-
omials are usually defined over a unit disk. However, we
sed the method as a reconstruction tool in a way similar to
undström, Unsbo, and Gustafsson.30 The mask is then dis-
laced over the surface and the process is repeated on each
ocal area. The surface reconstruction takes into account the
ttings in all zones, diminishing the influence of smooth areas
ver irregular ones and vice versa. The method limits the
nfluence of the peripheral irregularities over the central cor-
eal area calculation, thus giving accurate reconstruction of
he central optical zone. This fact will be of special interest in
he evaluation of wavefront aberrations of irregular corneas
e.g., keratoconus, pellucid marginal corneal degeneration,
orneal etc.�. Thus, we join the advantage of a simpler ana-
ytical form of the modal representation together with the ben-
fit of local definition of the zonal one. We have compared
onal Zernike fitting with the modal approach, evaluating
oth techniques over two different surfaces: a theoretical ir-
egular surface and height data of a real keratoconic cornea.

Methods
ernike polynomials are often used as an expansion of cor-
eal height data and to analyze of optical wavefronts, being
ow order terms directly related to classical Seidel
berrations.31 As a complete modal set, any surface can be
pproximated by a linear combination of circular polynomials
s follows:32

W��,�� � �
j=0

p−1

cjZj��,�� = G��,��; j =
1

2
�n�n + 2� + m� ,

�1�

here n and m are the radial order and the azimuthal fre-
uency, respectively, p is the number of terms in the expan-
ournal of Biomedical Optics 026022-
sion, cj are the Zernike coefficients associated with their
Zernike polynomial Zj�� ,��, � is the normalized distance
from the origin, and � is the angle.

The modal fitting principle of the Zernike representation is
shown in Eq. �1�. The data W�� ,�� are approximated by a
polynomial function extended over the whole domain �Fig. 1�.
The best estimation of cj parameters is obtained by solving
the linear least-squares problem described by the system of
equations that can be deduced from Eq. �1�. Our basic equa-
tion is W=Zc, which is a linear transformation on c, where c
are the expansions coefficients, W is a discrete set of elevation
data, and Z is a matrix of discrete Zernike polynomials. The
problem is choosing the coefficients c to minimize, in some
sense, the difference between the observed W discrete eleva-
tions and the prescribed output of the system Zc. The function
to be minimized is:33,34

��c� = cTc + tT�W − Zc� , �2�

where t is the vector of Lagrange multipliers and the super
index T means matrix transposition. The minimization yields

c = Z+W , �3�

where the super index+stands for matrix pseudoinverse, de-
veloped by Moore and later by Penrose.35 To calculate the
pseudoinverse, we used a method called singular value de-
composition �SVD�, implemented in MATLAB based in lin-
ear algebra package �LAPACK� routines.36 This method pro-
vides a solution to Eq. �3�, regardless of being a determined,
undetermined, or overdetermined system.

Zonal Zernike fitting is developed in the same way as a
modal one, but the equation W=Zc is not solved over the
whole domain. The surface is divided into zones that overlap
each other �see Video 1�. It takes advantage of increasing the
influence of the central zone in the adjustment, thus providing
a better description of the more interesting optical area. On
the contrary, in the modal fitting, periphery data have a
heavier influence than central ones due to the fact that they
are more numerous.

Fig. 1 Area of the height data where modal fitting is obtained.
March/April 2010 � Vol. 15�2�2
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Let us call W�u ,v� a surface described by an N�N ma-
rix, with u and v being discrete indexes from 1 to N. A local
rea of M�M pixels, being M�N, is selected in this matrix
here we solve Eq. �1�. Zernike decomposition for this region

s obtained, thus having a local description of the surface. The
alculation area is displaced along the entire surface, and a
onal Zernike polynomial fit is obtained each time. Recon-
truction on one point is done by evaluating all Zernike de-
ompositions, describing the local areas that overlap on this
oint and taking the mean value of the obtained height. Cal-
ulation windows for selecting local regions are implemented
y constructing auxiliary matrices of size N�N, whose ele-
ournal of Biomedical Optics 026022-
ments are equal to one in the region of interest and zero else-
where. These matrices are described by:

Oa,b�u,v� = �1; u � �a,a + �M − 1�� ∧ v � �b,b + �M − 1��
0; otherwise

� ,

�4�

where 1�a�N− �M−1�, and 1�b�N− �M−1�. The Had-
amard product of matrices Oa,b�u ,v� with the initial one
�W�u ,v�� will select the local areas. Mathematically, auxil-
iary matrices that contain the local fittings are described by
Wa,b�u ,v�, Thus, Zernike decomposition over the local do-
main defined by M can be written as:
Wa,b�u,v� = 	�j=0

p−1

cj
�a,b�Zj���u,v�,��u,v��; u � �a,a + �M − 1�� ∧ v � �b,b + �M − 1��

0; otherwise

 , �5�
ith ���u,v� ,��u,v�� being the polar coordinates of element in
u ,v� of the global matrix. From Eq. �5� it can be seen that
he Zernike fitting is performed over a square mask, thus a
omplication arises, since Zernike polynomials are orthogonal
n the unit disk. In a way similar to Lundström, Unsbo, and
ustafsson,30 who proposed a direct reconstruction method

or elliptical pupils, we have solved the problem. The region
f missing data between the mask and the whole pupil can be
gnored, provided there are enough valid measured heights to
erform a fit. Once the coefficients are determined, the sur-
ace can be reconstructed over the entire domain of the pupil,
ven though valid data used to compute the coefficients are
vailable only in the limited area of the mask. There will thus
e an extrapolated part of the surface outside the mask that

ideo 1 Areas of the height data where zonal Zernike fitting is ob-
ained. Note the overlap of masks �QuickTime, 823.5 KB�. �URL:
ttp://dx.doi.org/10.1117/1.3394260.1�.
has no physical relevance. When the reconstructed surface is
evaluated, this part is removed.

As we said before, one point of the surface may belong to
different local regions. Thus, it is necessary to take into ac-
count how many regions overlap on a single pixel. According
to our previous description, the reconstructed surface can be
written as

L�u,v� =

�
a=1

N−�M−1�

�
b=1

N−�M−1�

Wa,b�u,v�

�
a=1

N−�M−1�

�
b=1

N−�M−1�

Oa,b�u,v�

. �6�

We would like to point out that the surface can be interpolated
at any �u ,v� point, now expressed like real numbers. The
reader should also note that central area samples are included
in more local matrices than those in the periphery, and thus
calculation becomes more accurate. According to the process
just described, notice that all elements integrated into the sub-
matrix defined between elements �M ,M� and �N−M+1,N
−M+1� are evaluated M2 times. The existence of such a
central matrix, which contains �N−2�M−1��2 elements, re-
quires M� �N+1� /2. Selection of an optimum value for M
has been done, balancing the size of the local kernel and the
number of elements in the central zone, i.e.:

fN�M� = M2�N − 2�M − 1��2. �7�

From the Eq. �7� derivative, we obtained a maximum that
provide an optimum value for M.
March/April 2010 � Vol. 15�2�3
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Mopt = round�N + 2

4
� . �8�

raditionally, conical curves are used for approximating oph-
halmic surfaces in the eye. The method just presented has
een evaluated over two different surfaces. On the one hand
here is a theoretical irregular surface composed of a sphere
lus a decentered double-peak surface with a single hole,
nown as Franke’s function �Eq. �9��, which has been exten-
ively used by researchers to test new fitting schemes, as a
ighly complex wavefront.9

K�x,y� =
3

4
exp�− ��9x − 2�2 + �9y − 2�2�

4
�

+
3

4
exp�−  �9x + 1�2

49
+

�9y + 1�2

10
��

+
1

2
exp�− �9x − 7�2 +

�9y − 3�2

4
��

+
1

5
exp�− ��9x − 4�2 + �9y − 7�2�� . �9�

n the other hand, we have evaluated height data of a real
eratoconic cornea measured with a Pentacam �Oculus Op-
ikgeräte GmbH, Wetzlar, Germany�. Evaluation of the good-
ess of reconstruction is done through the minus logarithm of
he root mean square deviation �lRMSD�:

lRMSD = − log�	�
u=1

N

�
v=1

N

�F�u,v� − W�u,v��2

N2



1/2

� ,

�10�

here F�u ,v� stands for the reconstructed surface points us-
ng modal, F�u ,v�=G�u ,v�, or zonal, F�u ,v�=L�u ,v�,
ernike fitting, and W�u ,v� are the surface height data.

Results
btained lRMSD for a spherical surface of curvature radius
f 6.5 mm plus a scaled Franke’s function defined on an area
ith a diameter of 4 mm sampled every 0.1 mm are shown in
ig. 2. We have applied modal and zonal Zernike fittings with

wo different masks of size 21�21 px and 11�11 px, this
ast one being optimum according to Eq. �9�. The best fit is
btained for the maximum lRMSD. We find different maxima
or each fitting: zonal Zernike fitting with a 11�11 px mask
t 43 polynomials, 96 polynomials for a 21�21 px mask,
nd 114 polynomials for modal fitting. Notice that zonal
ernike fitting provides a better adjustment than the modal
ne for any number of considered polynomials.

Figures 3–5 present the differences between the original
urface and the reconstructed ones using the polynomial de-
omposition that provides the best adjustment for each
ethod. All differences are set to the same scale to emphasize

he influence of zonal Zernike fitting. Notice that for both
onal Zernike fitting cases, the reconstruction error is lower
han for the global case. Moreover, as the local mask becomes
maller, the central area is better reconstructed.
ournal of Biomedical Optics 026022-
Obtained lRMSDs for the height data of a real keratoconic
cornea with a pupil diameter of 4 mm have been calculated
and are shown in Fig. 6. We have applied modal and zonal
Zernike fittings using the same masks as before. Again, it is
shown that zonal Zernike fitting provides a better adjustment
than the global one, as we saw in the theoretical surface case.

Contrary to what one may think, increasing the number of
terms in the Zernike polynomial decompositions does not
gives a more realistic approximation in numerical image
analysis. In practice, the SVD method can always provide a
unique solution, although the matrix Z+ is ill-conditioned and
numerically rank deficient. This rank deficiency may be diag-
nosed through the condition number. The problem arises when
the condition number is too large, because the SVD provides
a bad least-squares solution.22 This fact can be seen in the
falls of the lRMSD plotted in Fig. 6. There is a number of
polynomials from which the solution obtained is degraded.

Fig. 2 Reconstruction error between the Franke’s plus sphere surface
and the reconstructed surfaces. lRMSD for modal and zonal Zernike
fitting with a 21�21 and 11�11 px mask.

Fig. 3 Difference between the Franke’s plus sphere surface and the
reconstructed surface obtained using the zonal Zernike fitting that
provides the best adjustment for 11�11 px �43 polynomials�.
March/April 2010 � Vol. 15�2�4
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Figures 7–9 present the height differences between real
eratoconic corneal data obtained from the Pentacam and the
econstructed ones using the polynomial decomposition that
rovides the best adjustment for each method. All differences
re set to the same scale to emphasize the influence of zonal
ernike fitting. Results are quite similar to those obtained for

he simulation. Again, results show that the keratoconic cor-
eal height description through Zernike polynomials over the
hole surface produces fitting errors in the whole area,
hereas the zonal Zernike analysis proposed here provides a

ower surface fitting error, mainly in the central region �see
ig. 7�, which is optically the most important.

Conclusion
n this work, we develop a zonal Zernike fitting of corneal
eight data. It consists of obtaining Zernike coefficients over

ig. 4 Difference between the Franke’s plus sphere surface and the
econstructed surface obtained using the zonal Zernike fitting that
rovides the best adjustment for 21�21 px �96 polynomials�.

ig. 5 Difference between the Franke’s plus sphere surface and the
econstructed surface obtained using the modal fitting that provides
he best adjustment �120 polynomials�.
ournal of Biomedical Optics 026022-
local areas. A local displacing mask is applied on the surface,
and polynomial fit is done for this part of the surface. The
surface reconstruction takes into account the fittings in all the
zones, thus diminishing the influence of smooth areas over
irregular ones and vice versa. Zonal Zernike fitting has the
same advantage of the simple analytical form of the modal
representation, together with the benefit of local definition of
the zonal one. If we compare for the same polynomial order
�28 coefficients� our results with those presented in Ref. 24,
they achieve a RMSD around 3·10−3 mm for an irregular
surface �modeling a keratoconic cornea� using radial basis
functions, while our analysis on a similar case �see Fig. 6�
shows that zonal Zernike fitting reaches between 2 and 4 or-
ders of magnitude lower, depending on the size of the zonal
mask we used. Furthermore, we compare our technique with
that proposed in Ref. 22 on the same complex surface

Fig. 6 Reconstruction error between the height data of a real kerato-
conic cornea and the reconstructed surfaces. lRMSD for modal and
zonal Zernike fitting with a 21�21 and 11�11 px mask.

Fig. 7 Difference between the height data of a real keratoconic cor-
nea and the reconstructed surface obtained using the zonal Zernike
fitting that provides the best adjustment for 11�11 px �217
polynomials�.
March/April 2010 � Vol. 15�2�5
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Franke’s function�, and we find that the rms of the recon-
tructed surface is four times lower in our model. Regarding
he computational cost of our method, it is at least 2 orders of

agnitude higher than the traditional Zernike calculation over
he entire surface.

Our goal is to propose a combination of techniques that
ould be a good strategy for fitting, reconstructing, and resa-
pling corneal height data. Local fitting reduces the influence

f regions far from the calculation point. The implementation
f the method also shows that the central corneal surface part
s better evaluated than the outer parts, since calculation is

ore intensive in this zone and is not affected by peripheral
rregularities. Thus, the presented method allows for better

ig. 8 Difference between the height data of a real keratoconic cor-
ea and the reconstructed surface obtained using the zonal Zernike
tting that provides the best adjustment for 21�21 px �196
olynomials�.

ig. 9 Difference between the height data of a real keratoconic cor-
ea and the reconstructed surface obtained using the modal fitting

hat provides the best adjustment �178 polynomials�.
ournal of Biomedical Optics 026022-
reconstruction of optical surfaces, mainly of the optical cen-
tral zone, than the traditional one based on polynomial fitting
of the whole surface.
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