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bstract. We propose a new method that classifies wafer images
ccording to their defect types for automatic defect classification in
emiconductor fabrication processes. Conventional image classifi-
rs using global properties cannot be used in this problem, because
he defects usually occupy very small regions in the images. Hence,
he defects should first be segmented, and the shape of the seg-
ent and the features extracted from the region are used for clas-

ification. In other words, we need to develop a classification-after-
egmentation approach for the use of features from the small
egions corresponding to the defects. However, the segmentation of
cratch defects is not easy due to the shrinking bias problem when
sing conventional methods. We propose a new Markov random
eld-based method for the segmentation of wafer images. Then we
esign an AdaBoost-based classifier that uses the features ex-
racted from the segmented local regions. © 2010 SPIE and
S&T. �DOI: 10.1117/1.3429116�

Introduction
utomatic defect classification �ADC� is a wafer fabrica-

ion process that classifies defects into predefined types,
.g., particle, scratch, etc. Figures 1�a� and 1�b� show ex-
mples of a particle and scratches, respectively. By cor-
ectly classifying the defects, the cause of the defects can
e analyzed, and this information is used for improving the
rocess and consequently the yield. Hence, there have been
any studies on ADC. For example, Kameyama and
osugi:1 proposed a method that exploits a hyperellipsoid

lustering network �HCN� with radial basis function �RBF�
nd model switching. Also, smart beam search �SBS� using
support vector machine �SVM� was proposed for feature

election.2 However, there are some difficulties in applying
onventional appearance-based pattern classification meth-
ds �e.g., techniques used in face detection3� to ADC, be-
ause defects in the same class have too many variants in
heir shapes. Also, since the defect regions occupy very
mall portions of the image, the global feature statistics
e.g., frequency or filter bank responses� are useless. To
esolve these difficulties, we propose a new method based
n classification-after-segmentation.

The most essential part of the process may be the correct
egmentation of defects. Due to the shrinking bias
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problem,7 however, the conventional state of the art seg-
mentation methods based on maximum a posterior Markov
random fields �MAP-MRF� with a Potts model data term4–6

often oversegment a scratch �thin object� into several ob-
jects, and thus a scratch can appear as particles. For dealing
with this problem, we propose a new MAP-MRF based
segmentation method. To be specific, we develop a new
energy function for the MAP-MRF scheme based on the
Retinex theory8 for handling the blurry scratches and the
color inconsistency. After segmentation, we define several
features �shape, intensity, and so on� for each defect, and
develop an AdaBoost classifier to tell whether the patch
corresponds to a particle or other defects �including
scratch�.

In the experiments, we show that our segmentation
method reduces the oversegmentation of scratches and thus
keeps the false alarm rate low, even for high particle detec-
tion rates.

2 Segmentation
Among the many segmentation methods, the state of the art
MAP-MRF approach is adopted here.4–6 That is, segmen-
tation is achieved by minimizing an energy function:

E�f� = �
p�P

Vp�fp� + �
p�P

�
q�N�p�

Vp,q�fp, fq� , �1�

where P is a set of sites, N�p� is an eight-neighborhood
system, fp� �1, . . . ,N� is a label of the site p, and
f = �fp�p�P. The label fp indicates that the site p belongs to
the segment whose label is fp. Specifically, the data term
Vp�fp� is designed so that pixels having similar intensity
values are clustered into a single segment:

Vp�fp� = �I�p� − M � fp� , �2�

where I�p� is the intensity of a given pixel p, and M de-
notes the difference of intensity between the adjacent la-
bels. Vp,q�fp , fq� is called the smoothness term, defined as

Vp,q
C �fp, fq� = exp�−

�I�p� − I�q��2

�2 ���fp, fq� , �3�

where � is a constant and ��fp , fq� is defined as

��fp, fq� = 	1 if fp � fq

0 otherwise

 , �4�

in conventional works.5,6 Vp,q
C �fp , fq� enforces the continuity

of labels by penalizing label discontinuities. However, it is
well known that since the Vp,q

C �fp , fq� tries to minimize the
length of boundary9 �shrinking bias�, this method often seg-
ments a long and thin object into several parts. Also,
blurred boundaries deteriorate the performance of Vp� · �
�especially when capturing thin objects�. Hence, many long
and thin objects in wafer images are frequently segmented
into several parts, and they are often confused with par-
ticles.

To prevent oversegmentation, we develop a new func-
tion to be included into the data term:
Apr–Jun 2010/Vol. 19(2)1
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p,q
R �fp, fq� = ��1 − ��L�p�,L�q���� � ��fp, fq� , �5�

here L�p� is a Retinex filtering of input.8 To be specific,
he L�p� for our purpose is defined as

�p� = 
1, if
I�p�
G�p�

� T

0, otherwise
� , �6�

here G�p� is a Gaussian blurred image at pixel p, and T is
predefined parameter �in our implementation, T is 0.9�.
ote that the Retinex filtering compensates for the blurring

t the image formation process, and improves color
onsistency caused by illumination change.8 Therefore,
�p�=L�q� and p�N�q� means that p and q have the same

ntrinsic colors �even if �I�p�− I�q���0�, and the labels sat-
sfying fp� fq should be penalized. In summary, Vp,q

R �fp , fq�
lleviates the shrinking bias by penalizing the discontinui-
ies occurring on the pixels having the same intrinsic col-
rs. A similar idea can also be found in the binarization of
ocument images.10 Finally, the smoothness term in Eq. �1�
s given by

ig. 1 Example images and segmentation results: �a� particle im-
ge, �b� scratch image, �c� proposed segmentation for particle im-
ge, �d� proposed segmentation for scratch image, �e� Potts model-
ased segmentation for particle image, and �f� Potts model-based
egmentation for scratch image.
ournal of Electronic Imaging 020502-
Vp,q�fp, fq� = �1Vp,q
C �fp, fq� + �2Vp,q

R �fp, fq� , �7�

where �1 and �2 are two balancing parameters.

3 Classification
Since each particle and scratch is segmented into a single
region by the proposed segmentation algorithm, we can use
several features extracted from the segments to determine
whether it is a particle defect or not.

3.1 Features

Let S be a set of positional vectors in a given segment, �S�
be the size of S, and I�x ,y� be the pixel intensity at
�x ,y��S. Then features can be summarized as follows.

Mean intensity:

1

�S� �
�x,y��S

I�x,y� . �8�

Shape descriptor:

�max

�min
, �9�

where �max and �min are two eigenvalues of the covariance
matrix of S �when the value is close to unity, the shape has
no directional preference, and �max /�min�1 means that the
shape is a thin and elongated one�.

Texture measure:

�
i=1

4

�i
2, �10�

where �i’s are eigenvalues of the covariance matrix of the
vectors at points �x ,y��S,

�� �I

�x
�,� �I

�y
�,� �2I

�x2�,� �2I

�y2�� . �11�

The vector in Eq. �11� is computed over �x ,y��S and the
covariance matrix of these vectors is found. Then, Eq. �10�
is defined as the measure of texture, which has a large value
when there exists a particular directional texture.

Measure of orientation bias �of edges�: obtained from
the histogram of

arctan� �I

�y� �I

�x
� . �12�

By computing the orientation histogram and summing the
sizes of four dominant bins, we can measure the bias of
orientation distribution.

3.2 AdaBoost

For machine learning using the extracted features, we use
the AdaBoost algorithm, where each weak classifier is
based on the log-likelihood ratio test
Apr–Jun 2010/Vol. 19(2)2
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t�x� = ln
pt

+�x�
pt

−�x�
, �13�

here x indicates the output of segmentation in the feature
pace, pt

+�x� denotes the weighted histogram of the t’th fea-
ure for a positive sample, and pt

−�x� is similarly defined.
hen, after the training process, a strong classifier F�x� is
iven by

�x� = �
t=1

T

�tht�x� , �14�

here, from the standard AdaBoost algorithm,11 �t is deter-
ined by the function of current error rate e:

t = log
1 − e

e
. �15�

Experimental Results
he dataset for the experiment consists of defected images
cquired by a 266-nm bright field inspection instrument
12-in. �100� oriented silicon wafer, magnification of more
han 104 times�. Among the dataset, we use 380 images
ncluding particle defects and 150 images including scratch
efects as training samples. Then we test 200 images con-
aining particle defects and 200 images having no particle
efects �of course they contain other defects such as scratch
efects�. As can be seen in Fig. 1�c�–1�f�, the proposed
erm improves segmentation performance. The main pur-
ose of ADC is to automatically classify the particle from
he other kinds of defects �mostly scratches�, hence we
valuate the performance of ADC using the detection ratio
DR� of particle defects and the false alarm �FA� of other
efects considered as particle, which are defined as

R =
the number of correctly detected particle defects

the number of all particle defects
,

�16�

ig. 2 ROC curve comparing our method to the Potts model-based
ethod.
ournal of Electronic Imaging 020502-
FA =
the number of defects misclassified as particle

the number of all scratch defects
. �17�

In typical detection problems, if we try to increase the DR,
the FA also increases and vice versa. Hence the perfor-
mance of classifier or detector can be measured by the re-
ceiver operating characteristic �ROC� that shows the DR
versus FA. When the FA is kept low for the high DRs, the
detector is considered to be a good one. We compare the
ROCs before and after applying our new method in Fig. 2,
where it can be observed that our method keeps the DR
very high even for very low �down to 0.05� FA rates.

5 Conclusion
In this work, we propose a new approach to ADC based on
the classification-after-segmentation framework. The wafer
image is first segmented based on the MAP-MRF approach,
where a new energy function is designed to prevent the
degeneration of scratch into several regions. Then, an Ada-
Boost classifier is trained using the features extracted from
the segments. According to the experimental results on
wide variants of particles, the proposed approach shows
good classification performance.
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