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Abstract. Rapid Raman mapping has the potential to be
used for automated histopathology diagnosis, providing an
adjunct technique to histology diagnosis. The aim of this
work is to evaluate the feasibility of automated and objec-
tive pathology classification of Raman maps using linear
discriminant analysis. Raman maps of esophageal tissue
sections are acquired. Principal component (PC)-fed lin-
ear discriminant analysis (LDA) is carried out using subsets
of the Raman map data (6483 spectra). An overall (vali-
dated) training classification model performance of 97.7%
(sensitivity 95.0 to 100% and specificity 98.6 to 100%) is
obtained. The remainder of the map spectra (131,672 spec-
tra) are projected onto the classification model resulting in
Raman images, demonstrating good correlation with con-
tiguous hematoxylin and eosin (HE) sections. Initial results
suggest that LDA has the potential to automate pathology
diagnosis of esophageal Raman images, but since the classi-
fication of test spectra is forced into existing training groups,
further work is required to optimize the training model. A
small pixel size is advantageous for developing the train-
ing datasets using mapping data, despite lengthy mapping
times, due to additional morphological information gained,
and could facilitate differentiation of further tissue groups,
such as the basal cells/lamina propria, in the future, but
larger pixels sizes (and faster mapping) may be more feasible
for clinical application. C©2010 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.3512244]
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1 Introduction
1.1 Clinical Motivation
The current gold standard for the diagnosis of esophageal
precancers and cancers is endoscopic biopsy, followed by his-
tological staining with hematoxylin and eosin (HE). Barrett’s
intestinal metaplasia (IM) is a cellular change induced in many
individuals by acid reflux. Patients with Barrett’s IM have an
increased risk of developing esophageal adenocarcinoma. As a
result, patients with Barrett’s IM are often enrolled in endoscopic
surveillance programs to detect precancers in the esophagus,
which generate large numbers of tissue samples. This increases
the workload for the histology department. In particular, large
numbers of the samples taken are in fact classified as normal
squamous or Barrett’s IM, and therefore the diagnosis would
not affect the way in which the patient is managed, since they
would continue on the surveillance program. The current gold
standard, histological diagnosis, is subjective and relies on the
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interpretation of morphological features.1 The majority of dis-
crepancies occur in samples that are very similar, since there
is a continuum of subtle cellular changes in the neoplastic pro-
gression to cancer, and consequentially, IM, low-grade dysplasia
(LGD), and high-grade dysplasia (HGD) samples are of partic-
ular concern. A technique that can distinguish between these
pathology groups would provide a clinically useful adjunct to
current diagnostic methods.

Raman spectroscopy is an inelastic scattering technique that
effectively provides a biochemical fingerprint, enabling the clas-
sification of different tissue types and pathology groups. Used
in combination with multivariate analysis, the technique has
the potential to provide automated, objective, and reproducible
diagnosis of tissue pathologies. Our group has shown that the
technique is a promising method to distinguish normal, pre-
cancerous, and cancerous changes in unstained esophageal tis-
sue using a laboratory-based Raman system.2, 3 Our group and
others have demonstrated applications in other tissues, includ-
ing the cervix,4 larynx,5 bronchus,6 bladder,7, 8 colon,9 breast,10

skin,11 and brain.12 Further details can be found in recent re-
view articles.13, 14 The technique also has the potential to be used
in vivo through the use of fiber optic devices.15–18

1.2 Raman Spectral Mapping
It has previously been shown that Raman spectroscopy in
combination with multivariate analysis can distinguish eight
esophageal pathologies.2 This work develops the idea of using
the combination of multivariate analytical techniques and rapid
Raman spectral mapping as a potential technique for automated
histopathology. In previous publications, we have shown that
technological advances have reduced Raman mapping times to
a level that has made implementation in a clinical environment
a future possibility.19, 20 Thus Raman spectroscopic mapping
could potentially be used as an aid to the histopathologist. How-
ever, evaluation of linear discriminant analysis for automated
analysis of such large datasets has yet to be carried out for
Raman imaging applications. Raman mapping has advantages
over current histology diagnosis, since stains are not required,
and consequently this reduces sample preparation. A further
question that remained unanswered was whether or not the pos-
sibility of additional information gained from high (lateral) spa-
tial resolution Raman mapping would be a useful adjunct for the
histopathologist. The issue of spatial resolution is discussed in
this work.

Raman spectroscopy has the potential for high lateral spatial
resolution mapping (micrometer to submicron level).21 How-
ever, applications on biological tissue sections have been lim-
ited due to lengthy overall mapping times, often many hours for
samples sized 1 mm2.

Fourier transform infrared (FT-IR) imaging is an al-
ternative (vibrational spectroscopic) technique that provides
biochemical information of biological tissue, as demonstrated
by many studies.22–25 Others have used both Raman and
FT-IR as complimentary techniques.26, 27 The spatial resolu-
tion of laboratory-based spectrometers are diffraction limited:
however, due to the wavelengths used for NIR Raman spec-
troscopy, this is less of a limitation, making higher (∼1 μm)
lateral spatial resolutions feasible.28 The spatial resolution of
laboratory-based FT-IR systems, however, varies with wave-
length (∼8 μm at 4000 cm− 1).29 The use of synchrotron sources

has reduced the spatial resolution30 by enabling a smaller spot
size, but clinical applications are restricted due to practicalities
of widespread implementation. Higher lateral spatial resolutions
can also be achieved with attenuated total reflection (ATR) imag-
ing, whereby a high refractive index crystal probes a smaller spot
size. However, contact is required between the ATR crystal and
the sample over the whole field of interest.

Spatial resolution is one of the most critical measurement
parameters in spectroscopic imaging29: however, an in-depth
quantification of the lateral spatial resolution is beyond the scope
of this work. The lateral spatial resolution is often limited by
the lateral step size parameter, since even for a system capable
of achieving high lateral spatial resolution, if a step size greater
than the lateral spatial resolution is used, the pixel size becomes
the limiting factor. The term pixel size is therefore used in place
of lateral spatial resolution in this work. For further information,
the reader is referred to the aforementioned publications.

In previous studies by the authors using rapid Raman
mapping,20 the pixel size was not reduced below 7.4 μm
(approximately the width of the focused laser line using the
50×objective), due to limitations caused by the dataset size and
also to prevent oversampling. Improvements in programming,
software, and computer power have since enabled larger datasets
to be handled. From one perspective, this has increased the total
area that can be mapped, but from another perspective, this has
also increased the spatial resolution that could be utilized. The
detrimental effects of undersampling are clear with the possi-
bility of missing an area of focal disease. This work explores
Raman maps acquired with small pixel sizes and demonstrates
the advantages for clinical diagnosis and automated classifica-
tion. Oversampling is less significant than undersampling and
can in fact be advantageous for spectroscopic mapping due to
improvements in the definition of tissue boundaries.25 The lim-
itation of the system used in this study is a 1.1-μm step size
using a 50×objective, and since the advantage of synchronous
readout technology, such as Renishaw’s StreamLineTM (outlined
elsewhere20) is greater for smaller step sizes, large datasets (of
the order of hundreds of thousands of spectra) can be generated
in a practicable time frame.

Many studies have reported the use of principal component
analysis (PCA) for Raman imaging purposes.3, 27, 31, 32 To the
best of the authors’ knowledge, there are only two Raman map-
ping studies of esophageal tissue sections.3, 20 Shetty et al.3

demonstrated high levels of glycogen in normal squamous tissue
compared with a relative increase in the DNA levels in abnor-
mal esophageal tissue sections. However, the Raman maps were
acquired with large pixel sizes (potentially losing key spectral
information) to enable sample coverage while minimizing long
overall mapping times. Raman images presented in this study
are of high spatial resolution and overcome previous limitations.

This work also extends the use of multivariate analysis to
include PCA-fed linear discriminant analysis (LDA) of Ra-
man images of esophageal tissue sections. Although PCA-fed
LDA for pathology classification of Raman spectral data is a
widely accepted technique, there are a limited number of pub-
lications applying the technique to Raman mapping of human
tissue,11, 33 and only a few FT-IR imaging studies of biological
tissue.34–37 Other multivariate techniques such as cluster analy-
sis (CA) and artificial neural networks (ANN) have been used for
Raman and FT-IR image analysis. However, CA cannot be used
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explicitly to generate diagnostic algorithms, because you cannot
easily project independent data onto the CA model and predict
which group the data belongs to. ANN have high computational
requirements,38 and there is a lack of transparency of the vari-
ables utilized by the discriminating algorithms. PCA-fed LDA
has the advantage that it is well understood and enables the in-
dependent test dataset to be projected onto the training dataset.
PCA/LDA also enables supporting biochemical information to
be extracted from the PCA/LDA loadings, unlike “black box”
methods that do not allow the user to validate the biochemical
basis for separation. This work aims to evaluate the performance
of a PCA-fed LDA model for automated histology classification,
and comparison of these other analysis techniques with LDA is
beyond the scope of this work.

2 Materials and Methods
2.1 Sample Collection and Preparation
Two samples from two different patients have been mapped in
this study to evaluate the feasibility of the technique. Informed
consent was obtained from patients undergoing routine upper
gastrointestinal endoscopy and surgical resection. The Glouces-
tershire Local Research Ethics Committee granted ethical ap-
proval for this study.

Fresh tissue samples were obtained from endoscopic biopsy
procedures and immediately snap frozen in liquid nitrogen.
Biopsy samples are typically 1 to 2 mm in diameter. Sam-
ples were stored in a –80◦C freezer until measurements were
carried out. For each sample, a 15-μm frozen section was
cut onto a (ultraviolet-grade) calcium fluoride (CaF2) substrate
(Crystran, Poole, United Kingdom) for Raman spectral map-
ping. The thickness of the mapping section was chosen to max-
imize Raman scattered photons from the tissue section (while
not taking the section beyond 1 to 2 cells thick).

A contiguous 7-μm frozen section was cut and stained with
HE for diagnosis by an expert gastrointestinal registry pathol-
ogist. The mapped section was also stained with HE following
Raman spectral mapping.

The histological diagnosis was made using the contiguous
HE section and subsequently verified on the HE stained mapped
section (on CaF2) by a second histopathologist. Both the con-
tiguous section HE and the mapped section (on CaF2 stained
with HE) are shown for comparison. Regions of fibrous con-
nective tissue (FCT), normal squamous (NSq), and high-grade
dysplasia (HGD) were identified.

2.2 Raman Spectral Measurement
Raman maps were acquired using a customized Renishaw
Raman System 1000 spectrometer with StreamLineTM tech-
nology (Renishaw Plc., Wotton-under-Edge, Gloucestershire,
United Kingdom). The customized Raman system comprises a
near-IR diode laser (830 nm, ∼35 mW at the sample) for excita-
tion, a Leica microscope with a Leica 50×(NA 0.5) long working
distance objective to illuminate the sample (line focused using
a fixed cylindrical lens) and collect the Raman scattered pho-
tons, a metal oxide edge filter to remove the elastically scattered
light, a 300 lines/mm grating to disperse the inelastically scat-
tered light, and a deep depletion charged-coupled device (CCD)
detector. The StreamLine technology has been described in de-
tail previously,20 but in brief, the rapid mapping system utilizes

synchronous raster scanning of the sample across a line-focused
laser spot (∼7×50 μm) with CCD readout to allow faster spec-
tral acquisition. The synchronous readout of the CCD is used to
spatially separate spectral information acquired from different
portions of the line focused laser, thus enabling the potential for
sampling areas smaller than the length of the laser line. The pixel
size (user defined) is determined by binning CCD pixels, there-
fore a pixel size (when back-projected through the microscope
and spectrometer optics onto the sample) of any dimension can
be chosen, limited only by the relative size of the CCD pixels and
the magnification of the optics in the system. Pixels are usually
defined as square pixels for convenience, but this is not essen-
tial. Selecting a pixel size less than the width of the laser line
will result in oversampling, but this approach has been shown
to improve spatial resolution.

A white light montage image of the tissue section on CaF2

was obtained using a 2.5×objective. The white light image was
compared to the contiguous HE section to ensure the Raman
map covered regions of different tissue type. Raman maps were
then acquired (50×objective) with step sizes of 8.4 and 2.1 μm
and an acquisition time of 15 s (to achieve spectra with good
signal-to-noise ratio). This resulted in Raman maps with pixel
sizes of 8.4 and 2.1 μm. Overall mapping times depended on
the area of the sample mapped, but were of the order of 2 to 4 h
for 8.4-μm pixel maps, and 12 to 18 h for 2.1-μm pixel maps.
Samples were air-dried prior to measurement.

2.3 Data Analysis
Saturated spectra were removed and cosmic rays were corrected
by linear interpolation of the data points on either side of the cos-
mic ray peak. Subsequently, each map dataset was normalized
and mean-centered. Principal component analysis (PCA) was
carried out in Matlab (The MathWorks, Natick, Massachusetts)
using the PLS toolbox (Eigenvector Technologies, Manson,
Washington). Any remaining cosmic rays still evident in the
PC loads and pseudocolor PC score images were blanked out,
removed from the calculation, and the PCs regenerated.

2.4 Principal Component Imaging
Pseudocolor PC score maps were then plotted and overlaid to
identify spectrally different regions within the Raman map. Each
pixel of the PC scores image was color coded; the upper and
lower extremes of the PC scores (0 to 25% and 75 to 100%)
represented the pixels/spectra with the most significant contri-
butions from the positive and negative aspects of the PC loads,
respectively, and were illustrated with contrasting colors. Pix-
els falling into the central range of the scores were left trans-
parent to enable the images to be overlaid. The corresponding
PC loads were color coded accordingly to enable correlation
of biochemical constituents from peaks within the PC loads
with morphological information from the pseudocolor PC score
image.

2.5 Comparison of Maps Acquired with Different
Pixel Size

As a first step toward automated histopathology, bulk tissue
discrimination was tested, i.e., discrimination between different
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tissue types. Raman maps of sample 1 (which contained HGD
and FCT) were acquired with two different pixel sizes (8.4 and
2.1 μm) to enable comparison. PC-fed LDA was then carried
out (using the first ten PCs). Ten PCs were chosen as a cut-
off, since beyond this the PC loadings represented only noise,
thus minimizing the risk of the model fitting noise to the data.
Based on the information from the histopathologist, spectra
were classified as either calcium fluoride (CaF2), tissue bor-
der (TB), high-grade dysplasia (HGD) or fibrous connective tis-
sue (FCT). Fluorescence (Fl) was also included in the training
model, since the PC imaging highlighted the presence of fluores-
cence spectra within the tissue structure. Since the fluorescence
spectra are spectrally very different from Raman spectra, these
were included as a separate group. The remaining spectra, for
which their grouping was ambiguous (either due to the fact that
there is not a distinct boundary between the tissue types, or the
spectra were found to have overlapping PC load contributions),
were excluded from the training dataset and labeled as the test
dataset. The training dataset was normalized and mean-centred.
Spectra acquired from CaF2 were included in the mean cen-
tering process, since it was concluded that the substrate would
be an important contributor to the signals measured. Discrep-
ancy with substrate impurities can lead to misclassifications,
and furthermore, this can also be important for regions of thin
tissue that may contain contributions from both substrate and
tissue.

The test dataset was then scaled by subtracting the mean of
the training dataset, and subsequently projected onto the LDA
classification model as an independent test dataset. Although
the test dataset is not truly independent, since it originates from
the same sample, it is not included in the training dataset and
therefore provides an adequate method of validating the model
for this feasibility study.

Each pixel was then color coded according to the pathology
group into which the classification model assigned each spec-
trum. The resulting LDA pseudocolor pathology map was then
compared to the HE stained sections. Misclassified spectra were
identified as black pixels.

2.6 Linear Discriminant Analysis Images Acquired
Using Small Well-Defined Pathology Regions

To further test the limitations of the technique, the size of
the training dataset was reduced such that only small, well-
defined histological regions were selected. Since the majority
of misclassifications in the previous model were in the TB
group, this group was excluded from subsequent classification
models.

A PCA-fed LDA model was generated using the training
dataset, and the remainder of the map was assigned to the
test dataset. PCA was carried out prior to LDA to reduce the
number of variables and reduce noise. As described previ-
ously, the test dataset was scaled and projected onto the clas-
sification model, and an LDA pseudocolor pathology map was
created.

2.7 Combining Maps with Different Pathology
Sample 2 was selected, as it contained NSq epithelium and
FCT; a PCA-fed LDA pseudocolor pathology map was cre-

ated. As an initial method of evaluating the process, the maps
from the two samples were combined to demonstrate the fea-
sibility of the classification model when working for multiple
samples. Regions were selected in the combined map to create
a training dataset for the PCA-fed LDA model. The training
dataset included two different CaF2 substrates, FCT from two
different samples, HGD from one sample, and NSq from one
sample.

2.8 Model Validation
The final six-group classification model was validated by ran-
domly removing one third of the spectra in the training dataset
and using this to test the model. This was repeated 200 times.
The validated model accuracy was calculated by taking the
average overall training performance for the 200 iterations.
The sensitivity and specificity of each iteration was calcu-
lated and the mean used as the final validated sensitivity and
specificity.

3 Results
3.1 Principal Component Imaging
Figure 1 shows the white light montage image of sample 1,
acquired using a 2.5×objective. The box indicates the region
containing HGD and FCT, which was mapped with two
different pixel sizes. The histopathologist noted that the regions
between the HGD glands were also FCT (interglandular FCT).
The contiguous section and the mapped tissue section (on
CaF2) stained with HE for histology purposes are also shown.
The quality of the staining on the section that had been mapped
previously was poorer than that of the contiguous section, as
evident in Figs. 1(c), 1(d), and 1(e). However, the mapped
section that was stained enabled better correlation of the mor-
phological features of the tissue samples with those visible in the
Raman map.

Figure 2 shows an example of a pseudocolor PC score image
(PC 2) and corresponding PC load. The extremes (0 to 25% and
75 to 100%) of the color bar are represented by a single block
of color, with the central portion remaining transparent. This
enabled the different PC images to be overlaid, thus identify-
ing morphological regions that could be assigned a pathology
diagnosis by the histopathologist.

3.2 Comparison of Maps Acquired with Different
Pixel Size

When the PC scores and loads were compared, both were found
to be similar for the repeated maps. This suggests that there
are no obvious biochemical changes occurring with time for the
repeated maps; however, more subtle changes cannot be ruled
out. The performance of the classification models was similar for
maps acquired with both 8.4- and 2.1-μm pixel size on sample 1.
Overall training performances of 94.4% (79.4 to 99.0% sensi-
tivity and 95.0 to 99.8% specificity) and 93.7% (87.2 to 100.0%
sensitivity and 95.2 to 100.0% specificity) were obtained for the
8.4- and 2.1-μm pixel size maps, respectively. The number of
spectra correctly classified in each model is shown in Table 1.
The remaining pixels (test dataset), indicated by white pix-
els, were projected onto the LDA model and then color coded
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Fig. 1 Sample 1. (a) White light image and mapped area. (b) Mapped tissue section (on CaF2) stained with HE. (c) Magnified region of mapped
area. (d) Contiguous 7-μm HE stained section. (e) Magnified region of (approximate) mapped area.

according to the LDA prediction. The LDA pseudocolor pathol-
ogy maps are shown in Fig. 3 for both the 8.4- and 2.1-μm
maps.

The LDA pseudocolor pathology maps are comparable for
both pixel sizes when considering the bulk discrimination of
HGD and FCT. There is a slight discontinuity in the 2.1-μm pixel
map at x pixel number 210, where two smaller maps were joined
together. The spectral predictions in both are consistent with
tissue pathology and location in the HE stained section image.
The 2.1-μm pixel map, however, demonstrates clearly defined
boundaries of the HGD glands and gland lumen. Furthermore, it
is evident the FCT can be seen to extend between the glandular
features of the HGD, as confirmed by the histopathologist. In the
8.4-μm pixel map, the HGD glands appear to be blurred with
the surrounding FCT, and only small regions of interglandular
FCT are identified.

The 2.1-μm pixel map provides additional information re-
lating to the sample morphology, which can be useful for iden-
tifying small features. In this example, additional information
relating to structure of the sample can be gleaned in comparison
with the 8.4-μm pixel map. This indicates a loss of spectral in-
formation with decreased spatial resolution, which may require
further work to confirm whether this is clinically significant or
not. Additional work is also required to investigate the origins
of the fluorescence within the maps, which appears to be struc-
turally situated within the FCT.

Lasch and Naumann29 rigorously investigated the effect of
pixel size by binning adjacent pixels and comparing the resultant
cluster images, but the different approach adopted in this study

uses real experimental results, and therefore may be subject to
any artifacts inherent within the CCD pixel binning. Since this
is how the system would be used in real life, it was concluded
that this was a more realistic approach for evaluating the system
for clinical use.

3.3 Example of Normal Squamous Epithelium
The process outlined before was repeated on a map (15-s ac-
quisition and 8.4-μm pixel size) of sample 2 (containing NSq
and FCT), but in this case the size of the training dataset was
reduced further still, such that only small rectangular regions
were selected.

Figure 4(a) shows the regions of the map selected for the
training dataset (defined by small but distinct regions of NSq,
FCT, and CaF2) color coded according to pathology. The spec-
tra that were retained for the independent test dataset are repre-
sented as white pixels.

The overall training classification performance for the PCA-
fed LDA model was 100%, as illustrated in Fig. 4(a), since there
are no black pixels representing misclassified spectra. Fluores-
cence was not included as a group within the model, as this
was not evident in the map. The projected model is shown in
Fig. 4(b), superimposed as an inset on the white light image as a
pseudocolor LDA image. The predicted pathology classification
is represented by the color of the pixels. The HE images for the
contiguous section and for the mapped section are also shown
to illustrate the pathology of the mapped region.

Fig. 2 Example of how the transparent PC images are generated and overlaid. (a) Pseudocolor PC 2 score image and (b) corresponding PC load for
the 2.1-μm map obtained from sample 1. (c) Overlaid pseudocolor PC score images (PCs 1 through 5).
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Table 1 Classification performance of the training dataset of the PCA-
fed LDA model (8.4- and 2.1-μm pixel sizes, 15-s acquisition time)
measured on sample 1.

CaF2 TB FCT HGD Fl Correctly
classified (%)

8.4 μm CaF2 374 7 0 0 0 98.2

TB 14 150 24 1 0 79.4

FCT 0 0 990 4 6 99.0

HGD 0 3 196 3420 43 93.4

Fl 0 2 0 0 165 98.8

2.1 μm CaF2 5541 543 0 0 0 91.1

TB 187 1352 11 0 0 87.2

FCT 0 1 5399 0 0 100.0

HGD 0 125 3951 65,813 714 93.2

Fl 0 4 2 0 4067 99.9

Fig. 3 Performance of the LDA tissue classification model (generated
using sample 1: (a) 8.4-μm pixel size and (b) 2.1-μm pixel size. There
is a subtle discontinuity (at x pixel number 210) in the 2.1-μm map,
since the large map area was generated by joining two smaller maps
together.

3.4 Combining Maps with Different Pathology
(2.1 μm)

To further test the LDA projection of map data onto the tissue
classification model, maps of the two samples (15-s acquisition
time and 2.1-μm pixel size) were combined to form a large
map containing HGD (sample 1), FCT (from samples 1 and 2),
NSq (sample 2), and CaF2 (from samples 1 and 2). The map
of sample 2 was cropped for convenience, since it allowed the
dimensions of the two maps to be matched, illustrated by a
solid black line across the map of sample 2. This would not be
required for future applications. The cropped region was chosen
to ensure that each classification group was represented in the
map of sample 2.

The combined map of sample 1 and 2 was then reanalyzed
to investigate the feasibility of extending this to multiple tissue
maps and tissue types. Again, small distinct regions of each
tissue type (NSq, FCT, and HGD) and also CaF2 and fluores-
cence were defined as the training dataset. The remainder of the
dataset was retained as an independent test dataset, which was
subsequently projected onto the classification model.

An initial training dataset (7640 spectra) model was used
to separate five groups: normal squamous epithelium (NSq),
fibrous connective tissue (FCT), high-grade dysplasia (HGD),
substrate (CaF2), and fluorescence (Fl). The overall classifica-
tion accuracy of the PCA-fed LDA model was 98.5% (95.8 to
99.9% sensitivity and 99.1 to 100% specificity). Projecting the
test dataset (130,695 spectra) onto the classification model and
reconstructing as a pseudocolor LDA image (Fig. 5) demon-
strated good correlation with the HE stained sections; however,
there are discrepancies that occur within the basal cells/lamina
propria region of the NSq.

It is noteworthy that this incorrect classification only occurs
when HGD is included in the training model. In Fig. 4(b), it is
evident that the basal cells/lamina propria (BC/LP) are classi-
fied as NSq and FCT in the absence of HGD from the train-
ing model. This highlights a limitation in the way this LDA
model was generated, since all the tissue groups available must
be included as a group in the training dataset. Previous work
published by Kendall et al.2 demonstrated that eight and nine
pathology groups can be distinguished with good sensitivity and
specificity, but representing all other tissue types/pathologies re-
mains a challenge. This also serves to highlight the strength of
LDA in identifying spectra that relate to tissue regions which are
biochemically similar, such as in this example, areas containing
densely packed rapidly dividing cells.

Regions of fluorescence not previously identified in sample 2
are detected within the FCT. Again, the majority appear to be
situated within the FCT tissue but further work is required to
confirm this. Also, there are regions at the edge of sample 2 that
are misclassified as HGD. It is thought this is due to tissue folds
at the edge of the sample that may contain basal cells, although
this is difficult to verify.

Conclusions can be drawn from the misclassification of the
basal cells/lamina propria (BC/LP) as HGD, since the classifi-
cation could be occurring based on biochemical signatures of
cell nuclei that are rapidly proliferating and densely packed in
both HGD and also the basal cells. Although potentially prob-
lematic if each of these groups are not included in future models,
identification of the nuclear material in both the basal cells and

Journal of Biomedical Optics November/December 2010 � Vol. 15(6)066015-6



Hutchings et al.: Evaluation of linear discriminant analysis for automated Raman histological . . .

Fig. 4 Pseudocolor LDA image of sample 2. (a) Regions selected from the mapped region for the training dataset, including normal squamous
(green), fibrous connective tissue (yellow), and CaF2 (gray). The white pixels represent the test dataset. (b) White light of the mapped sample with
inset image representing the LDA projected classification for each pixel within the map. (c) HE image of 7-μm-thick consecutive section and (d) HE
image of the 15-μm-thick mapped section (on CaF2). (Color online only.)

HGD does however demonstrate that the Raman spectroscopic
technique is producing stain-free spectroscopic images equiva-
lent to that produced by hematoxylin (from the HE histopathol-
ogy stain). In the future, work is required to determine the
optimum number of classification groups required for each ap-
plication of spectral tissue diagnosis.

To further investigate the feasibility of using LDA for au-
tomated tissue classification, BC/LP was added as a separate
spectral group within the model and the PC loads were analyzed
to investigate the spectroscopic basis for tissue classification.

An initial training dataset (6483 spectra) validated model
was used to separate six groups: normal squamous epithelium
(NSq), fibrous connective tissue (FCT), high-grade dysplasia

(HGD), basal cells/lamina propria (BC/LP), substrate (CaF2),
and fluorescence (Fl). HGD and BC/LP are easily separated us-
ing LDA with very few misclassifications (Table 2). The overall
accuracy of model was 97.7% (sensitivity 95.0 to 100% and
specificity 98.6 to 100%). Projecting the test dataset (131,672
spectra) onto the classification model and reconstructing as a
pseudocolor LDA image [Figs. 6(a), 6(b), and 6(c)] demon-
strated good correlation with the HE stained section, although
there is a small region of FCT at the edge of the sample that is
still misclassified as HGD.

To further investigate the biochemical basis of the classifica-
tion, the PC scores for NSq, BC/LP, and HGD were plotted and
the corresponding PC loadings analyzed for spectral features,

Fig. 5 Pseudocolor LDA image of samples 1 and 2 (with central portion of map removed to match map dimensions). The dotted black line indicates
the position where the sample 2 map was cropped. (a) HE of the contiguous section identifying regions selected for the training dataset. (b) The
predicted classification for each pixel-normal squamous (green), fibrous connective tissue (yellow) and CaF2 (grey), HGD (purple), fluorescence
(Fl-pink). The white pixels (remainder of the map) represent the test dataset. Misclassified pixels/spectra are colour coded according to the LDA
prediction. (c) Pseudocolour LDA image of sample 1 and sample 2 in which the test dataset is projected onto the LDA model.
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Table 2 Classification performance of the training dataset of the PCA-fed LDA model (2.1-μm pixel sizes, 15-s acquisition
time) measured on samples 1 and 2.

NSq HGD CaF2 FCT Fl BC/LP Total number of spectra (percent correctly classified)

NSq 1606 0 0 0 0 39 1645 (97.6%)

HGD 0 336 4 1 0 10 351 (95.7%)

CaF2 0 0 2063 0 0 0 2063 (100.0%)

FCT 0 82 0 1659 5 0 1746 (95.0%)

Fl 0 1 0 2 123 0 126 (97.6%)

BC/LP 1 2 0 1 0 548 552 (99.3%)

as shown in Fig. 7. It can be seen from Fig. 7(c) that PC1 ac-
counts for the separation of BC/LP and HGD. Spectral Raman
peaks can be identified in the PC1 loading at 852, 940, 1003,
1036, 1261, 1312, 1453, and 1659 cm− 1. Tentative peak assign-
ment can be made to collagen IV, which is a major biochem-
ical constituent of the basement membrane. It is evident that
PC2 separates BC/LP and HGD from NSq. The loading for PC2
exhibits one strong positive peak at 785 cm− 1 and a weaker peak
at 1579 cm− 1, which can tentatively be attributed to DNA, and
multiple negative peaks (470, 855, 944, 1036, 1088, 1135, 1338,
and 1467 cm− 1) demonstrate a strong correlation with glycogen
peaks. It is expected that glycogen is present in NSq epithelium
but not in abnormal tissue, since the cells are rapidly prolifer-
ating and use up the glycogen stores. This has been detected
previously using Raman spectroscopy and reported previously
in the literature.3 An increase in DNA is also expected with
HGD, since characteristically HGD contains enlarged densely
packed nuclei. An increase in DNA can also be explained for the
BC/LP, which contains densely packed and dividing cells close
to the basement membrane.

4 Discussion
This study has shown that mapping with small pixel sizes (in-
creased spatial resolution) is not necessarily needed for histo-
logical diagnosis, since bulk tissue pathology groups can be dis-
tinguished, even with a step size of 8.4-μm pixel size. However,
mapping with a small pixel size does have some advantages.
There is the advantage of acquiring a large number of spec-
tra, which is amplified for reduced step sizes due to the square
relation between step size and number of pixels. The additional
spatial and spectral biochemical information could potentially
facilitate the separation of more pathology/tissue groups and po-
tentially make classification models more robust, since spectral
mixing between adjacent pixels is reduced.

There is also the potential, as discussed before, that the map
obtained with high spatial resolution will identify more subtle
biochemical features. As a result, the model performance for
the small pixel size map could potentially be significantly bet-
ter if the initial groupings are chosen more carefully. However,
mapping at even smaller step sizes can also induce greater het-
erogeneity in the maps, even from cells of the same pathology

Fig. 6 (a) Regions selected from the mapped region for the training dataset, including normal squamous (green), fibrous connective tissue (yellow),
CaF2 (gray), HGD (purple), basal cell/lamina propria (BC/LP, dark green), and fluorescence (Fl, pink). Black pixels identify those pixels misclassified
by the LDA model. The white pixels (remainder of the map) represent the test dataset. (b) Same as (a), except the misclassified pixels/spectra are
color coded according to the LDA prediction. (c) Pseudocolor LDA image of samples 1 and 2 (with central portion of map cropped to match map
dimensions). (Color online only.)
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Fig. 7 (a) PC1 loading, (b) PC2 loading, and (c) PC scores scatter plot, PC1 versus PC2. HGD (purple circles), BC/LP (dark green stars), and NSq
(light green triangles). (Color online only.)

(due to sampling different parts of the cell within each image
pixel).

LDA is a well known and accepted technique for spectral
classification, and this work has shown its potential application
in Raman imaging for histological diagnosis. It has also served
to highlight limitations of this study (in the sense that spectra,
such as spectra from the BC/LP, may be misclassified if not
included in the original training dataset). Further work is still
required to investigate the extent to which the technique can
be exploited with respect to automated imaging. Larger sample
numbers and the full range of pathology/tissue groups (Barrett’s
IM, low-grade dysplasia, adenocarcinoma, etc.) need to be in-
cluded in the training dataset. The projection of a test dataset
onto the model allows it to be validated, but more rigorous val-
idation and testing using further samples (and pathologies) will
still be required. Only two samples from two patients were in-
cluded in this study, but previous work has demonstrated that
classification is feasible over a wider population with 1125 spec-
tra (point measurements) on 87 homogeneous biopsy samples
from 44 patients.2 Nevertheless, this is an important step in
the move toward clinical implementation of vibrational spec-
troscopy in combination with multivariate analysis for auto-
mated histopathology.

It is well known that the initial group choices are an impor-
tant factor with LDA model performance. Therefore, this study
was limited by operator choice in the selection of the training
dataset. Cluster analysis may provide an alternative method, but
since the technique is computationally intensive due to the large
dataset sizes, this was not feasible in this case. Furthermore,
cluster analysis also relies on prior knowledge of the number of
groups present, and relies on the operator setting this parameter.
Further work is also required to optimize selection of spectra
for the classification model. Cross-sample test dataset valida-
tion demonstrated that this technique could be applied across
different samples.

The degree of classification required for specific pathology
applications remains an unanswered question. For example, if
the ultimate aim is only to distinguish normal from abnormal
tissue, then relatively crude spatial averaging and poor signal-
to-noise spectra could be used. However, if the aim is to sepa-
rate out more subtle changes such as tissue types, precancers,
cancers, and even predict prognosis, then more subtle biochem-
ical features may need to be resolved. It will also depend on
whether the histopathologist is confident in spectroscopic diag-
nosis, without the additional morphological information repre-

sented in the form of a pseudocolor histology image. If not, then
maps acquired with a crude pixel size could potentially pro-
vide a rapid and automated method of pathology diagnosis. A
combination of modalities may be advantageous, for example,
FT-IR for mapping the entire sample, followed by small pixel
size Raman mapping of regions of interest. The complementary
nature of FT-IR and Raman is being explored by many groups,
including ours.26, 27

The extent to which we attempt to separate out pathology
information is a question of clinical need, which ultimately will
need to be answered by the histopathologist.

5 Conclusions
This study shows that the LDA projection imaging process can
potentially be applied to multiple mapped samples for auto-
mated histopathology, but further work is required before clini-
cal implementation of the technique, and other analysis methods
may be more suitable. Furthermore, spatial information can be
obtained by visually representing LDA classification as pseu-
docolor images. Displaying LDA classification models in this
way can provide insightful information that may help to explain
misclassifications based on morphological features, which is not
possible from a traditional scatter plot representation.

It also appears from this initial study that mapping with a
small pixel size is not essential for clinical diagnosis of bulk
tissue types, but has advantages for discriminating further tissue
types and enabling better correlation with tissue morphology for
classification model training. Further work is required to develop
diagnostically relevant algorithms in close collaboration with
clinicians.
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