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Abstract. The accurate and rapid assessment of tumor margins during breast cancer resection using optical
coherence tomography (OCT) has the potential to reduce patient risk. However, it is difficult to subjectively
distinguish cancer from normal fibroglandular stromal tissues in OCT images, and an objective measure is
needed. In this initial study, we investigate the potential of a one-dimensional fractal box-counting method for
cancer classification in OCT. We computed the fractal dimension, a measure of the self-similarity of an object,
along the depth axis of 44 ultrahigh-resolution OCT images of human breast tissues obtained from 4 cancer
patients. Correlative histology was employed to identify distinct regions of adipose, stroma, and cancer in the OCT
images. We report that the fractal dimension of stroma is significantly higher than that of cancer (P < 10− 5, t-test).
Furthermore, by adjusting the cutoff values of fractal dimension between cancer, stroma, and adipose tissues, sen-
sitivities and specificities of either 82.4% and 88.9%, or 88.2% and 81.5%, are obtained, respectively, for cancer
classification. The use of fractal analysis with OCT could potentially provide automated identification of tumor
margins during breast-sparing surgery. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3590746]
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1 Introduction
According to the American Cancer Society, approximately
261,100 women in the United States will be diagnosed with
breast cancer and 39,480 will die from it in 2010 alone, making
breast cancer the second leading cause of cancer death in the
United States.1 Reducing local recurrence after treatment corre-
lates with a decrease in the overall breast cancer mortality rate.2

The local recurrence rate following breast-conserving therapy,
which involves local resection (also referred to as “lumpec-
tomy”) with or without adjuvant chemotherapy or radiation
therapy, can be reduced considerably by obtaining histologically
negative margins.2, 3 The assessment of surgical margins at the
time of the patient’s surgical procedure is therefore an important
goal that can be addressed by optical techniques which have the
potential to increase the speed and accuracy of cancer detection.
Current research in this area includes the use of elastic scattering
spectroscopy,4 Raman spectroscopy,5 fluorescence,6 and diffuse
reflectance spectroscopy.7 The use of optical coherence tomog-
raphy (OCT) is of interest for margin assessment because, unlike
other optical techniques, it provides depth-resolved micrometer-
scale imaging of tissue structure that can be registered with sub-
sequent histology.8, 9 The ability for OCT to spatially map tissue
properties may be particularly advantageous in heterogeneous
tissues, or for detecting small metastases.
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OCT is a real-time, noninvasive imaging modality that em-
ploys interferometry to detect backscattered near-infrared light
to render two-dimensional (2D) or three-dimensional (3D) im-
ages of tissue penetrating ∼1 to 2 mm beneath the tissue
surface.10, 11 In addition, it can be combined with a catheter
or endoscope to image interior tissues.12, 13 The axial resolution
of OCT is micrometer-scale, and is determined by the coherence
length of the light source which is inversely proportional to the
bandwidth.10 The high resolution and millimeter penetration
depth of OCT provides images on a scale similar to histology,
and as such, it has been dubbed “in vivo optical biopsy.”12 These
features make OCT an ideal candidate for aiding in the detection
and treatment of breast cancer.8, 9

One of the most significant ways OCT can improve breast
cancer treatment is through the intraoperative assessment of sur-
gical margins.8, 9, 13 The current method used during a lumpec-
tomy involves sending resected tissue to a pathologist for a
frozen section analysis while the patient remains on the op-
erating table. This is seldom performed because of technical
and aritfactual issues that limit morphologic assessment. Typ-
ically, histopathological margin assessment is performed post-
operatively, and the finding of positive margins requires the
patient to undergo an additional surgical procedure. With OCT,
the imaging and analysis can be done in real-time, potentially
completing the process more quickly and consequently reducing
patient risk.8, 9, 13 Potentially, OCT can be used to rapidly scan
the entire surgical margin directly in the patient, in contrast to
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the usual pathological evaluation with a limited sampling of the
specimen margins. Therefore, OCT has the potential to provide
increased sensitivity and to reduce recurrence.

Before this can become common practice, an accurate cor-
relation between the OCT images and the histological stan-
dard needs to be developed. There are two main tissue types
in a normal female human breast. The majority of the breast
is composed of adipose tissue, which stores fat in cells called
adipocytes. The rest of the breast contains systems of ducts and
lobules, along with the fibrous connective tissue that supports
them. This connective tissue is known as fibroglandular stroma
(hereafter referred to as stroma). Several studies aimed at deter-
mining how normal and cancerous tissue types appear in OCT
images have previously been performed, with limited results.
In general, these studies have found that identifying adipose
is fairly straightforward due to its unique pattern of scattering
light.9, 14, 15 However, more difficulty is found in differentiating
stroma from carcinoma, either by inspection or by computa-
tional methods.9, 14, 15 Since determining tumor margins requires
knowing which areas contain cancer, it is necessary to be able
to distinguish between cancer and stroma.

In this paper, we investigate the use of fractal dimension
to characterize different tissue types. Fractal dimension, which
is based largely on Mandelbrot’s work with the properties of
fractals in nature, is a measure of an object’s complexity and
self-similarity.16, 17 The concept of fractal dimension has been
used as a way of quantifying the texture, or physical appearance,
of an image.16–18 Because cancer is characterized by disorder
and irregularity in tissues, it is reasonable to expect that fractal
analysis may have utility in cancer identification.19 Without a
quantitative metric such as fractal dimension, texture analysis of
breast tissue can be a subjective study, with different observers
often producing different results.20, 21 Fractal analysis has previ-
ously been employed to detect the presence of cancer in mam-
mography and microscopy images.21–23 Unlike these previously
employed imaging modalities, in OCT texture is dominated by
coherent speckles, which may exhibit a different fractal prop-
erty. Fractal analysis has recently been applied to OCT images
of arterial tissue and has shown promising results in differenti-
ating tissue layers.24 In this study, fractal analysis is applied to
OCT images of histologically correlated breast tissue types to
determine if their fractal dimensions provide an accurate way
of distinguishing them. Unlike the previous study of arteries,24

we employ an ultrahigh resolution (∼2 to 3 μm) OCT system
to provide a finer scale for resolving the pattern of scatterers in
normal and cancerous breast tissues.

2 Methods
2.1 Tissue Imaging and Pathology
Breast tissue specimens were obtained from mastectomy pa-
tients through the Biomedical Research Imaging Center accord-
ing to protocols approved by the Institutional Review Board
at the University of North Carolina at Chapel Hill, fixed with
10% formalin for preservation, and deidentified. (We note that
a previous study has shown that formalin causes tissue shrink-
age, resulting in increased scattering. While we do not expect
it to affect the disorder in the texture of the scattering, poten-
tial differences between fresh and fixed tissue require future

investigation.)25 Slices with lengths of ∼15 mm and widths of
3 to 5 mm were cut from the samples and imaged individu-
ally. They were soaked in dulbecco’s phosphate-buffered saline
(Mediatech, Inc.) to prevent dehydration during imaging. A total
of nine 3D OCT image sets were acquired from tissue samples
from four different patients.

The OCT system employed in this study is a spectral-domain
system based upon the use of a line camera spectrometer.26

Briefly, the OCT system consisted of a diode laser-pumped
Ti:Sapphire femtosecond laser (Griffin, KMLabs, Inc.) produc-
ing light with a center wavelength of ∼810 nm and bandwidth
of ∼125 nm, corresponding to an axial resolution of ∼3 μm. A
single-mode fiber directed light into a free-space interferometer
with reference and sample arms. The sample arm consisted of
x- and y-lateral scanning mirrors and an imaging lens providing
∼16 μm of lateral resolution. We note that this larger lateral res-
olution affords a Rayleigh range of 250 μm, which maintains a
relatively constant coherence volume over twice this length, and
may be important for avoiding depth-dependent variations in the
speckle contrast. The output of the interferometer was directed
using a single-mode fiber into a custom spectrometer comprised
of a transmission grating, imaging lens, and high speed line
CCD camera (Dalsa Piranha 2). The spectral resolution of the
spectrometer was designed to provide 2.05-mm imaging depth
in free space (corresponding to nominally 1.5-mm depth in tis-
sues). The camera axial scan rate of 5 kHz and exposure time
of 190 μs were chosen to maximize the signal while minimiz-
ing the amount of autocorrelation artifacts and saturation from
specular reflections. Sequential B-mode (x-z) OCT scans were
performed while incrementing in y to produce 3D images. Im-
ages were sampled over 3 to 5 mm × 3 to 5 mm × 1.5 mm (x × y
× z) into 1000 to 2500 ×121 to 201 × 1024 pixels, respectively.
With these sampling parameters, the pixel size was 1.46 μm
in z corresponding to ∼2× oversampling, which was constant
throughout the subsequent box counting analysis.

After acquiring the OCT images, the tissue samples were
inked with different colors of tissue dye from the Davidson
Marking System (Bradley Products, Inc.) on four sides in order
to maintain the orientation. The samples were processed by the
Translational Pathology Laboratory (TPL) at the University of
North Carolina at Chapel Hill, where they were paraffin embed-
ded, sectioned in the same plane as the OCT B-mode images
into 5 μm slices, and stained with hematoxylin and eosin (H&E)
for analysis with a light microscope. The resulting microscopy
slides were analyzed by a pathologist who classified the tissue
and cancer types that were seen in each sample. Since the major-
ity of the slides contained more than one tissue type, subregions
within the slides were analyzed individually. The pathologist
indicated which sections of each slide were adipose, stroma or
in situ or invasive cancer, so they could be compared to their
corresponding 3D OCT image sets. OCT images that had good
agreement with histology were picked out first. Agreement was
determined by comparing the positions and orientations of large
structures, such as blood vessels and ducts, as well as regions
of adipose, since they were easily identifiable in both the mi-
croscopy slides and the OCT B-mode images. From those that
agreed with histology, OCT images containing large contigu-
ous regions consisting of a single tissue type were chosen and
classified as the predominant tissue type in them, based on the
pathologist’s analysis. Attempts were made to choose areas of
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tissue that were completely distinct from one another, so that no
region contained multiple tissue types. However, this was dif-
ficult to achieve, particularly in regions of carcinoma, because
there were few contiguous regions large enough for analysis.
Therefore, the regions with only small portions of the nondom-
inant tissue types were chosen. Regions of stroma were chosen
from six different tissue samples taken from three of the pa-
tients, while regions of adipose and cancer were chosen from
seven and eight tissue samples, respectively, taken from all four
patients. In the end, 12 regions of adipose, 15 regions of stroma,
and 17 regions of cancer, for a total of 44 distinct regions, were
chosen for analysis.

2.2 Image Processing and Fractal Analysis
Next, the contrast in each OCT image was adjusted to achieve a
constant signal-to-noise ratio as follows. A background level B
was obtained from the mean value within an empty top portion
of the image, and the maximum signal S was obtained from
the mean value within the most highly scattering portion of the
image. The image pixel values I were then rescaled to an 8-bit
grayscale value I′ according to I′ = 255 (I-B)/(S-B).

The fractal dimensions within each region of interest
were then calculated using a one-dimensional box-counting
method.16, 17 Each column within a given region was first di-
vided into intervals of a specific length, li, with the first interval
starting at the top surface of the tissue and the last interval end-
ing 768 pixels below the surface. The next step consisted of
counting the number of intervals, Ni, that contained any pixels
above a certain threshold value. A threshold value of 70 was cho-
sen by examining the distribution of pixel values in the images
and finding a level above which pixels are predominantly signal
distinguished from background noise. The threshold value was
held constant for all of the regions analyzed. After counting,
the interval length was decreased by a factor of 2 and the pro-
cess repeated. The lengths of the intervals ranged from an initial
size of 128 pixels down to the final size of one. The fractal
dimension of the column was then calculated as the slope of
the least squares regression line of log(Ni) versus log(1/li). A
sample plot with the regression line is shown in Fig. 1. Since
each column is a one-dimensional section of the image, all of the
fractal dimension values should be between zero, the dimension
of a point, and one, that of a line. We note that this is different
from a previous OCT-based fractal analysis where the axial scan
line contour was box-counted in two dimensions.24 The fractal
dimension of each region of interest was assigned as the mean
of the individual column fractal dimensions.

2.3 Statistical Analysis
In order to associate fractal dimension values with adipose,
stroma, and cancer, the mean and standard deviation of the frac-
tal dimensions were tabulated for the regions classified as each
tissue type. A two-tailed t-test was used to determine if the
mean fractal dimensions for all three tissue types were signifi-
cantly different from one another. The t-values and associated
P-values were calculated to test the null hypothesis between each
pair of tissue type: adipose-cancer, adipose-stroma, and cancer-
stroma. Since three t-tests were performed on the same data set, a

Fig. 1 A log–log plot of number of boxes versus box size for a single
column. The slope of the linear fit is the fractal dimension.

Bonferroni correction was applied by increasing the P-values by
a factor of 3.

The sensitivity and specificity were computed to determine
how effective a test using the box-counting algorithm would be
at classifying cancer. We note that, due to the selection of homo-
geneous tissue regions for analysis, these values may not reflect
the true predictive utility of this technique in heterogeneous tis-
sues, and further study is needed to establish this. Sensitivity
was defined as the percentage of actual cancer-positive tissues
that are correctly identified (true positive rate), while specificity
was defined as the percentage of actual cancer-negative tissues
(stroma and adipose) that were correctly identified (true negative
rate). These were computed by choosing upper and lower cutoff
values of fractal dimension for classifying cancer compared to
noncancer (adipose or stroma). A receiver operating character-
istic (ROC) curve was generated by varying the cutoff values
over the entire range of fractal dimensions (0.516 to 0.900), and
the cutoff values providing the highest sensitivity at each value
of specificity were recorded.

3 Results and Discussion
The box-counting algorithm was used to calculate the fractal
dimension of each column within a region of interest, provid-
ing a distribution of values from which the mean and standard
deviation was computed. An example histogram of the fractal
dimension distributions for each of the three tissue types (adi-
pose, stroma, and cancer) is shown in Fig. 2, along with the
corresponding OCT and microscopy images. As expected, all of
the fractal dimensions were between zero and one. The width of
each distribution, quantified by its standard deviation, provides
an indication of the homogeneity of tissue in the particular re-
gion. Since it was not always possible to choose regions with
only a single tissue type, some of the regions contained small ar-
eas of tissue with a different classification than the predominant
tissue type. The regions with more of these small areas had wider
distributions resulting in higher standard deviations. Conversely,
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Fig. 2 Microscopy images of H&E stained breast tissue [(a), (d), and (e)], along with the corresponding B-mode OCT images [(b), (e), and (h)], and
distributions of fractal dimension values [(c), (f), and (i)] for the entire region. The tissue classifications for these regions are adipose [(a)–(c)], cancer
(invasive ductal carcinoma) [(d)–(f)], and stroma [(g)–(i)]. Stromal regions within the adipose tissue (a) and adipose cells within the cancer (d) and
stromal tissues (g) are heterogeneities that may broaden the measured fractal dimension distribution.

the more homogeneous regions had narrower distributions since
the fractal dimension values were more uniform.

The image sections containing adipose had the lowest fractal
dimensions, with a mean of 0.68 ± 0.06. Based on visual in-
spection of the OCT images, this result is expected because the
interior of adipose (fatty) cells do not scatter light as strongly
as either cancer or stroma, but the boundaries between cells and
extracellular space exhibit stronger scattering due to the refrac-
tive index mismatch between fat and water. In comparison to
stroma and cancer, the individual columns in a region of adi-
pose have a much more ordered pattern, with larger contiguous
regions corresponding to the interiors of the adipocytes. Stroma
and cancer both have cells with internal structures that produce a
more disordered (complex) scattering pattern. Because the OCT
images of adipose tissues are less complex than either cancer or
stroma, their fractal dimension values are lower.

The fractal dimensions for the regions of cancer and stroma
were closer together, with a mean of 0.79 ± 0.04 for cancer
regions and 0.85 ± 0.03 for stroma regions. The larger frac-
tal dimension of stromal tissue is contrary to what is expected
based upon the histological characteristic of tumors as having
increased disorder.19 Further study is needed to understand why
light microscopy, which contrasts tissue attenuation, exhibits
a different fractal pattern for cancer tissue than OCT, which
contrasts tissue backscattering.

Table 1 summarizes the results of the two-tailed t-tests. The
low P-values indicate that the fractal dimensions for each tissue
type are significantly different from one another. The difference
between adipose and either of the other two tissue types was
expected based on the visible distinctions in the OCT images

and results from previous studies. However, the difference in
the fractal dimensions of carcinoma and stroma is more signif-
icant than that found from other methods used previously.9, 15

While these previous methods were often able to identify sus-
picious regions of tissue, they were not always successful at
differentiating between cancer or stroma in these regions.9, 15

The box-counting method appears to be able to separate the two
tissue types with more certainty.

Since the mean cancer fractal dimension value is intermediate
between adipose and stroma, we identified upper and lower
cutoff values between which a sample was classified as cancer
(positive), and outside of which the sample was classified as
normal (negative). Using cutoff values of 0.75 and 0.83, the
sensitivity of the box-counting method is found to be 82.4%
and the specificity is 88.9%. Alternatively, a higher sensitivity
of 88.2% can be obtained at the expense of a lower specificity
of 81.5% when increasing the upper cutoff value to 0.85. A
ROC curve (Fig. 3) illustrates this tradeoff between sensitivity
and specificity. The area under the curve was calculated to be

Table 1 Results of a two-tailed t-test for each of the tissue type pairs.

Tissue pair T-value Degreee of freedom P-value

Adipose–cancer 5.323 27 2.06E-4

Adipose–stroma 9.038 25 7.62E-7

Cancer–stroma 6.182 30 2.66E-6
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Fig. 3 ROC curve for a sensitivity and specificity test for classifying
cancer versus adipose or stroma based on fractal dimension in OCT
images. The area under the curve is calculated to be 0.938.

0.938 using the trapezoidal rule. This value for the area is close
to the ideal value of 1, indicating that the fractal dimension is
a promising new metric for discriminating between cancer and
normal tissue. We note that the specificity by this method is
significantly improved from a previous method for automated
cancer detection in OCT images (which was 56% to 58%),
however the sensitivity in this study was lower.15 The fractal
method is also capable of higher specificity, at loss of sensitivity,
compared to a subjective analysis of OCT breast cancer images.9

The particular advantages of automated methods like this one
includes the ability to adjust the balance between sensitivity
and specificity by adjusting the parameter range for classifying
cancer, and to assess large areas of tissue more rapidly than a
human operator.

Given that the number of patients in this study was limited,
we calculated the power of this study using the number of pa-
tients as the degrees of freedom, rather than the total number
of samples that were used in the t-test above. This addresses
the possibility that interpatient variability is a larger source of
error than variability between samples from a single patient.
Assuming that the actual distribution of fractal values are a nor-
mal distribution with mean and standard deviation given by the
values measured in this study, and using a significance level
α = 0.05, we find the power is 80.7% for stroma and cancer,
and 82.4% for adipose and cancer, which represents the proba-
bility of measuring a statistically significant difference between
these groups. Importantly, the fractal dimension distributions
measured in this study will motivate the choice of sample size
in future study designs.

4 Conclusion
Due to variations in biological structure, the optical scattering
properties of breast tissue differ among tissue types, which af-
fects the texture in OCT images. Since these variations in OCT
signal are often difficult to detect through visual inspection of
the images alone, we demonstrate a quantitative method for dis-
tinguishing the different tissue types. We found that the fractal

dimensions of OCT images of breast tissue, determined using a
one-dimensional box-counting algorithm, are significantly dif-
ferent depending upon classification of the tissue region as adi-
pose, cancer, or stroma using correlative histology. Therefore,
fractal analysis could potentially be used to locate carcinoma
in OCT images. The sensitivity and specificity of a test based
on the fractal dimensions were 82.9% and 88.9%, respectively.
Although higher values for both sensitivity and specificity are
needed to provide assessment similar to histology, these first re-
sults are very promising. Due to the limited number of samples,
we did not tabulate the various types of carcinoma present in
the tissues, which may have caused increased variability in the
results. Future studies involving a greater number of tissue sam-
ples could aid in improving upon these results by allowing us
to control for different types of carcinoma. Of particular inter-
est would be determining if differences between carcinoma and
benign fibroglandular stroma would be present in both invasive
and in situ carcinoma as well as assessing differences between
ductal and lobular carcinomas. It may also be productive to in-
corporate other metrics into the algorithm used previously in
OCT, such as the depth-dependent attenuation rate,24 Fourier
spatial frequency analysis,15, 26 and spatial gray-level depen-
dence matrices.27 While the lower fractal dimension of adipose
tissue was expected based upon the ordered texture of this tissue
type in OCT, it is not yet understood why stromal tissue exhibits
a higher fractal dimension than cancer. A better understanding
is needed of the morphology of cancerous and stromal tissues
and how they relate to the observed differences in the complex-
ity of the OCT images. It is also important to note that high
resolution is important for extracting information from speckle
in coherence imaging.28 Therefore, the results in our study may
be partially enhanced by the use of an ultrahigh resolution OCT
system. However, future study is needed to determine the res-
olution necessary for effective fractal analysis in breast cancer.
Because OCT can provide real-time visualization over a broad
tumor margin during surgical resection, the development and re-
finement of these margin assessment techniques can positively
impact breast cancer treatment.
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