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Abstract. This paper discusses light propagation in N-layered turbid media. The hybrid diffusion-P3 equation is
solved for an N-layered finite or infinite turbid medium in the steady-state domain for one point source using the
extrapolated boundary condition. The Fourier transform formalism is applied to derive the analytical solutions of
the fluence rate in Fourier space. Two inverse Fourier transform methods are developed to calculate the fluence
rate in real space. In addition, the solutions of the hybrid diffusion-P3 equation are compared to the solutions of
the diffusion equation and the Monte Carlo simulation. For the case of small absorption coefficients, the solutions
of the N-layered diffusion equation and hybrid diffusion-P3 equation are almost equivalent and are in agreement
with the Monte Carlo simulation. For the case of large absorption coefficients, the model of the hybrid diffusion-P3
equation is more precise than that of the diffusion equation. In conclusion, the model of the hybrid diffusion-P3
equation can replace the diffusion equation for modeling light propagation in the N-layered turbid media for a
wide range of absorption coefficients. C©2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3640810]
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1 Introduction
The in vivo determination of tissue optical properties and the
study of light propagation in biological tissues are very impor-
tant in a variety of biomedical fields that can be used to obtain
knowledge of the physiological state of tissues.1–4 Diffuse re-
flectance spectroscopy has emerged as one of the noninvasive
optical techniques and it has been researched to obtain quanti-
tative tissue characterization and optical properties.4–9 In recent
years, the study of light propagation in layered turbid media has
gathered much attention because many parts of the body such as
the skin, stomach, and head have layered tissue structures that
require corresponding forward solutions.

Usually, the radiative transfer equation (RTE) is considered
to be the most precise equation for describing light propagation
in biological tissues and several solutions for the RTE have been
reported in previous literature. However, the direct analytical
solutions of the RTE cannot be easily obtained. Instead, the dis-
crete ordinates (SN) and the spherical harmonics equations (PN)
have been established to solve the RTE. The diffusion equation,
which is the P1 approximation of RTE, has been widely used
to obtain the solution for light propagation in layered turbid
media and several solutions have been reported in literature.
Dayan et al. used the Fourier and Laplace transforms to acquire
the solutions for the two-layered diffusion equation,10 while
Kienle et al. acquired the solutions for the two-layered diffu-
sion equation in the steady-state, frequency, and time domains
using the Fourier transforms.11, 12 Martelli et al. presented the
solutions for the case of two and three layers using the Eigen-
function method and the perturbation model.13–16 For the case
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of the N-layered diffusion equation, several groups have also re-
ported their solutions.17–22 Liemert et al. presented the solutions
for N-layered infinite or finite turbid media in the steady-state,
frequency, and time domains using the two-dimensional (2-D)
Fourier transform formalism19, 20 and also presented the solu-
tions for a cylindrical geometry.21, 22 Liemert’s group gave us a
complete set of solutions for the N-layered diffusion equation,
and they also studied the correctly and efficiently numerical 2-D
inverse Fourier transform and provided the executable program
on the Internet using the Delphi (Pascal) language.

However, the diffusion equation has several limitations. First,
the diffusion equation requires the optical absorption coefficient
μa to be much smaller than the scattering coefficient μs . A
typical criterion for the applicable region of the diffusion equa-
tion is that the reduced albedo a′ must be larger than 0.98.23

Second, the diffusion equation is valid only when the radial dis-
tance is larger than 10 transport mean free paths.24 Therefore,
the diffusion equation can be satisfied in the therapeutic win-
dow (λ = 650 − 950 nm) of most tissues with small absorption
coefficients. For example, the absorption coefficient of gray and
white matter in the adult head at a wavelength of 800 nm is 0.025
and 0.005 mm− 1 and the reduced scattering coefficient is 2.5 and
6 mm− 1, respectively.25 The absorption coefficient of human
skin in vitro in the therapeutic window is less than 0.05 mm− 1

and the reduced scattering coefficient is almost 1.5 mm− 1.26

However, in the near-IR (λ > 1000 nm) region of the spectrum,
the absorption coefficients of tissues become large and the re-
duced albedo can be 0.5 or smaller. For example, the absorption
coefficient of the dermis of the skin when λ > 1400 nm, is
larger than 0.5 mm− 1 and the reduced scattering coefficient is
less than 1.5 mm− 1.27 Evidently, there is a significant need for
methods that accurately describe light propagation in media with
large absorption coefficients, especially in the application of
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noninvasive blood glucose monitoring using NIR light in the re-
gion of 1000 to 2000 nm because of the high absorption of water
and skin tissues.28 Hull and Foster29 derived Green’s function of
the steady-state RTE in the P3 approximation for the infinite tur-
bid media and demonstrated that the P3 approximation models
the radiance in highly absorbing media or in the region close to
the source with an accuracy that is superior to that of the diffu-
sion equation. In order to develop the diffusion equation and to
simplify the P3 approximation to be used for highly absorbing
media, Hull and Foster investigated a modified diffusion approx-
imation model called the hybrid diffusion-P3 equation.29 Klose
also developed a method of the simplified spherical harmonics
equations (SPN) to approximate the more complicated equation
of radiative transfer for modeling light propagation in biological
tissues and found that the SPN significantly improves the diffu-
sion solution in transport-like domains with high absorption and
small geometries.30

In this study, we present the solution for the hybrid diffusion-
P3 equation for N-layered turbid media by combining the deriva-
tion of the N-layered diffusion equation in Liemert and Kienle’s
paper20 and the modified diffusion approximation model inves-
tigated by Hull and Foster29 in order to find a solution for light
propagation in N-layered turbid media for the case of large ab-
sorption coefficients. The hybrid diffusion-P3 equation is solved
for an N-layered finite or infinite turbid medium in the steady-
state domain for one point source using the extrapolated bound-
ary condition. The Fourier transform formalism is applied to
derive the analytical solutions of the fluence rate in the Fourier
space. The 2-D inverse Fourier transform is numerically calcu-
lated. In addition, the solutions of hybrid diffusion-P3 equation
are compared to those of the diffusion equation and Monte Carlo
simulations.

2 Theory
In this section, we use the Fourier transform formalism to derive
the steady-state hybrid diffusion-P3 equation for an N-layered
turbid medium having finite or infinite extensions.

2.1 N-layered Diffusion Equation
First, the N-layered diffusion equation can be described as
follows,20 when the turbid media in every layer is homogeneous:

D1��1(x, y, z) − μa1�1(x, y, z) = −q(x, y, z), 0 ≤ z < l1,

(1)

Dk��k(x, y, z) − μak�k(x, y, z) = 0,

k−1∑
j=1

l j < z ≤
k∑

j=1

l j ,

k = 2, 3, . . . , N , (2)

where �k is the fluence rate of the layer k, lk is the thickness,
and μ′

sk and μak are the reduced scattering and absorption co-
efficients, respectively. Dk = 1/[3(μ′

sk + μak)] is the diffusion
coefficient. q is the source term.

For a semi-infinite situation, the derivation of the N-layered
diffusion equation involves characterizing the source term and
satisfying the appropriate boundary condition. For the light
propagation in biological tissues, a pencil beam is usually mod-

zb2

lN

zb1

l2

l1z0

z
x

µa1, µs1', g1, n1

µa2, µs2', g2, n2
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y

Fig. 1 Scheme of the N-layered turbid media of one point source and
the extrapolated boundary condition.

eled as an infinite line of isotropic sources on a semi-infinite
scattering medium. According to the formalism developed by
Farrell et al.,31 we can obtain the distribution equation of the
source

q(z) = a′μ′
t

4π
exp(−μ′

t z), (3)

where μ′
t = μa + μ′

s , and a′ = μ′
s/(μ′

s + μa) is the reduced
albedo.

In order to represent the pencil beam in terms of simpler
source distributions, isotropic point sources are adopted to de-
scribe the distributions of the sources. The distributions of
isotropic point sources have a dipole moment with respect to
an origin at the air–tissue interface as the distribution in Eq.
(3).29 To satisfy the dipole moment, a single point source is
needed∫ ∞

0
za′μ′

t exp(−μ′
t z)dz =

∫ ∞

0
za′δ(z − z0)dz. (4)

The right side of Eq. (4) indicates that an infinite line of isotropic
sources can be modeled as a point source at an effective source
depthz0 = 1/(μ′

s + μa). Thus, the source item q(x, y, z)in Eq.
(1) can be expressed as

q(x, y, z) = a′
1δ(x, y, z − z0), (5)

where z0 = 1/(μa1 + μ′
s1) must locate in the first layer.

To obtain the solutions of the radiance emitted from a semi-
infinite medium, appropriate boundary conditions must be pre-
scribed at the interface between the surrounding media and the
biological tissue. The extrapolated boundary condition is one
of the boundary conditions used for a semi-infinite scattering
medium,32, 33 shown in Fig. 1, where �(x, y, z = −zb) = 0 and
zb is the position of the extrapolated boundary.

We then used the Fourier transform approach to solve the
N-layered diffusion equation based on Liemert and Kienle’s
paper.20 We apply the 2-D Fourier transform

�k(z, s1, s2) =
∫ ∞

−∞

∫ ∞

−∞
�k(z, x, y)ei(s1x+s2 y)dxdy (6)
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to Eqs. (1) and (2), and obtained the N-layered diffusion equation
in Fourier space

∂2

∂z2
�1(z, s) − a2

1�1(z, s) = − 1

D1
a′

1δ(z − z0), 0 ≤ z < l1,

(7)

∂2

∂z2
�k(z, s) − a2

k �k(z, s) = 0,

k−1∑
j=1

l j < z ≤
k∑

j=1

l j ,

k = 2, 3, . . . , N , (8)

with s =
√

s2
1 + s2

2 and a2
k = (μak + Dks2)/Dk .

2.2 N-layered Hybrid Diffusion-P3 Equation
The N-layered hybrid diffusion-P3 equation is the method based
on N-layered diffusion equation, combined with the coefficients
of the P3 approximation, which is the high-order approxima-
tion of the solution of RTE. It has been demonstrated that the
P3 approximation for modeling the radiance in highly absorb-
ing media or in the region close to the source is more accurate
than the diffusion equation.29 v− is the high-order coefficient
of the P3-Green function, which is named as the asymptotic
attenuation coefficient and approximately equal to the effective
attenuation coefficient μeff of the diffusion-Green function for
large albedos and increasingly deviates from μeff as the albedo
decreases.29 In addition, with the use of D = μa/(μeff )2, it has
also been demonstrated that the hybrid diffusion-P3 approxima-
tion for semi-infinite media is more accurate than diffusion ap-
proximation for the case of large absorption coefficients.34 So we
can obtain that v− associates with μeff of diffusion-Green func-
tion and μak

/
Dk and Dk of diffusion equation associate with

(v−
k )2 and Dasym k of P3 approximation, respectively. (v−

k )2 and
Dasym k are the high-order coefficients compared to μak

/
Dkand

Dk of the diffusion equation.
Thus, the N-layered hybrid diffusion-P3 equation is ob-

tained based on the N-layered diffusion equation by replacing
μak

/
Dkand Dk with (v−

k )2and Dasym k , respectively.

v−
k

= 1√
18

(
βk −

√
β2

k − γak

) 1
2

βk ≡ 27μak(μak + μ′
sk) + 28μak(μak + μ′

skδ)

+ 35μak(μak + μ′
skγk)μak(μak + μ′

skδk), (9)

γak ≡ 3780(μak + μ′
sk)(μak + μ′

skγk)(μak + μ′
skδk),

γk = (1 − g2k)/(1 − g1k),

δk = (1 − g3k)/(1 − g1k),

Dasym k = μak/(v−
k

)2,

and g1k , g2k , and g3k are the first-, second-, and third-moments of
the phase function in the layer k, respectively. For the Henyey–
Greenstein phase function, γk = 1 + g1k and δk = 1 + g1k

+ g2
1k .

Thus, we get the expression of the hybrid diffusion-P3 equa-
tion for N-layered turbid media in Fourier space

∂2

∂z2
�H

1
(z, s) − (

aH
1

)2
�H

1
(z, s) = − 1

Dasym 1
a′

1δ(z − z0),

0 ≤ z ≤ l1, (10)

∂2

∂z2
�H

k
(z, s) − (

aH
k

)2
�H

k
(z, s) = 0,

k−1∑
j=1

l j ≤ z ≤
k∑

j=1

l j ,

k = 2, 3, . . . , N , (11)

with s =
√

s2
1 + s2

2 and (aH
k )2 = (v−

k )2 + s2. �H
k

(z, s)is the flu-
ence rate in the Fourier space in the kth layer.

The following boundary conditions are used in the Fourier
space for an finite N-layered turbid medium:20

�H
1 (−zb1, s) = 0, (12)

�H ′
1 (z0, s) = �H

1 (z0, s), z0 < l1, (13)

∂�H
1 (z, s)

∂z

∣∣∣∣
z=z0

− ∂�H ′
1 (z, s)

∂z

∣∣∣∣∣
z=z0

= a′
1

Dasym 1
, (14)

�H
k (Lk, s)

�H
k+1(Lk, s)

=
(

nk

nk+1

)2

, Lk =
k∑

j=1

l j , 1 ≤ k ≤ N − 1,

(15)

Dasym k
∂�H

k (z, s)

∂z

∣∣∣∣
z=Lk

= Dasym k+1
∂�H

k+1(z, s)

∂z

∣∣∣∣∣
z=Lk

,

Lk =
k∑

j=1

l j , 1 ≤ k ≤ N − 1, (16)

�H
N (L N + zb2, s) = 0, (17)

where zb1 and zb2 are the positions of the extrapolated boundaries
above the first layer and below the last layer, respectively.

zb1 = 1 + Reff 1

1 − Reff 1
2Dasym 1, zb2 = 1 + Reff N

1 − Reff N
2Dasym N ,

(18)
where Reff 1 and Reff N are the effective reflection coefficients

at the top and bottom layers, respectively. We calculated Reff 1

and Reff N with the formula derived by Haskell et al.33

2.3 Solution of N-layered Hybrid Diffusion-P3
Equation

The solution of the N-layered hybrid diffusion-P3 equation [Eqs.
(10)–(17)] for the fluence rate in the Fourier space is solved
based on the derivation results from Liemert and Kienle’s pa-
per and by applying Cramer’s rule.20 The solution for the flu-
ence rate in the first layer (above the single point source) is
given by
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�H
1 (z, s) = a′

1

{
aH

1 β3 Dasym 1 cosh
[
aH

1 (l1 − z)
] + aH

2 γ3 Dasym 2
(
n2

2/n2
1

)
sinh

[
aH

1 (l1 − z)
]

aH
1 β3 Dasym 1 cosh

[
aH

1 (l1 + zb1)
] + aH

2 γ3 Dasym 2
(
n2

2/n2
1

)
sinh

[
aH

1 (l1 + zb1)
]

× sinh
[
aH

1 (z0 + zb1)
]

aH
1 Dasym 1

− sinh
[
aH

1 (z0 − z)
]

aH
1 Dasym 1

}
, (19)

and the fluence rate in the Nth layer (L N−1 ≤ z ≤ L N ) can be given by

�H
N (z, s) = a′

1

⎧⎪⎨
⎪⎩

∏N−1

k=2
aH

k Dasym k(nN /n1)2 sinh
[
aH

1 (z0 + zb1)
]

sinh
[
aH

N (L N + zb2 − z)
]

aH
1 β3 Dasym 1 cosh

[
aH

1 (l1 + zb1)
] + aH

2 γ3 Dasym 2
(
n2

2/n2
1

)
sinh

[
aH

1 (l1 + zb1)
]
⎫⎪⎬
⎪⎭ . (20)

In general, in the case of the N ≥ 3 and finite turbid media, the quantities β3 and γ3 are obtained by using recursion formulas. The
values of β3 and γ3 for finite N-layered turbid media are initiated by(

βN

γN

)
= aH

N−1 DH
asym N−1 sinh

[
aH

N (lN + zb2)
] [

cosh
(
aH

N−1lN−1
)

sinh
(
aH

N−1lN−1
)
]

+ aH
N DH

asym N

(
n2

N

n2
N−1

)
cosh

[
aH

N (lN + zb2)
] [

cosh
(
aH

N−1lN−1
)

sinh
(
aH

N−1lN−1
)
]

,

(21)

and the recurrence relations are given by

(
βk−1

γk−1

)
=

⎡
⎣ aH

k−2 DH
asym k−2 cosh

(
aH

k−2lk−2
)

aH
k−2 DH

asym k−2 sinh
(
aH

k−2lk−2
) aH

k−1 DH
asym k−1

(
n2

k−1/n2
k−2

)
sinh

(
aH

k−2lk−2
)

aH
k−1 DH

asym k−1

(
n2

k−1/n2
k−2

)
cosh

(
aH

k−2lk−2
)

⎤
⎦ (

βk

γk

)
. (22)

For the case of N ≥ 3 and the semi-infinite N-layered turbid
medium (L N → ∞), the start term for calculating β3 and γ3

becomes(
βN

γN

)
= aH

N−1 DH
asym N−1

[
cosh

(
aH

N−1lN−1
)

sinh
(
aH

N−1lN−1
)
]

+ aH
N DH

asym N

(
n2

N

n2
N−1

) [
cosh

(
aH

N−1lN−1
)

sinh
(
aH

N−1lN−1
)
]

,(23)

and the recursion formula is the same as Eq. (22).
In the case of the finite two-layered turbid medium (N = 2),

the values of β3 and γ3 are(
β3

γ3

)
=

(
sinh

[
aH

2 (l2 + zb2)
]

cosh
[
aH

2 (l2 + zb2)
]
)

. (24)

For the two-layered semi-infinite N-layered turbid medium
(L N → ∞), β3 = γ3 = 1.

Next, we used the 2-D inverse Fourier transform to obtain
the fluence rate �(x, y, z) in the real space. In this step, the
numerical calculation is performed to obtain the solutions for
the fluence rate in real space due to the difficulties of getting the
analytical solutions. The expression for the 2-D inverse Fourier
transform is given by

�H
k (x, y, z) = 1

(2π )2

∫ ∞

−∞

∫ ∞

−∞
�H

k (z, s)

× exp[−i(s1x + s2 y)]ds1ds2. (25)

The implementation of the 2-D inverse Fourier transform was
completed in two methods using MATLAB language. In the first

method (Inverse Fourier Transform, IFT1), �H
k (x, y, z) is ex-

pressed in a 2-D Fourier series:

�H
k (x, y, z) = �s1�s2

(2π)2

∞∑
m=−∞

∞∑
n=−∞

�H
k (z, m�s1, n�s2)

× exp[−i(m�s1x + n�s2 y)].
(26)

Equation (26) can be simplified by using rotational symmetry20

�H
k (x, y, z) = �s1�s2

(2π)2

∞∑
m=−∞

∞∑
n=−∞

�H
k (z, m�s1, n�s2)

× cos(m�s1x) cos(n�s2 y). (27)

Then, by simplifying the calculation of the sums, calculating in
one direction (setting y = 0), and assuming the same sampling
rate in both directions (�s1 = �s2 = �s), it is sufficient to get
the simpler expression of Eq. (27)

�H
k (x, 0, z) =

(
�s

2π

)2 {
�H

k (z, 0, 0)

+ 2
∞∑

m=1

�H
k (z, m�s, 0)[1 + cos(m�sx)]

+ 4
∞∑

m=1

∞∑
n=1

�H
k (z, m�s, n�s) cos(m�sx)

}
.

(28)

To obtain a better result, we typically use 6000 terms in the
infinite sums and a sampling rate of �s = μ′

s/400.
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In the second method (IFT2), the one-dimensional inverse
Hankel transform is obtained from Eq. (25)

�H
k (ρ, z) = 1

2π

∫ ∞

0
�H

k (z, s)s J0(sρ)ds, (29)

where J0 is the Bessel function of the first kind and zero order.
The discrete integral method is used to calculate the fluence rate.
We typically use 2×106 terms in the infinite sums to obtain high
accuracy. The upper limit of the integral is set to 30μ′

s . Addi-
tionally, the adaptive Gauss-Kronrod quadrature in the MATLAB

Mathematics Toolbox35 can be used to do numerical integration.
Using one of the two methods, the fluence rate in real space

is obtained. Thereafter, the spatially resolved reflectance RH (ρ)
of the first layer is given by32

RH (ρ) =
∫

2π

d�[1 − R f res(θ )]
1

4π

[
�H

1 (ρ, z = 0)

+ 3DH
asym 1

∂�H
1 (ρ, z)

∂z
|z=0 cos θ

]
cos θ, (30)

where R f res(θ ) is the Fresnel reflection coefficient for a photon
with an incident angle θ relative to the boundary.

3 Results
In this section, we first compare the different methods for com-
puting the inverse Fourier transform. Then, we compare the
solutions of the steady-state hybrid diffusion-P3 equation and
diffusion equation for a semi-infinite N-layered turbid medium
with the Monte Carlo simulation. The principles of the Monte
Carlo simulation of photon transport have been thoroughly
described.36 We use the MCML program to execute the Monte
Carlo simulation developed by Lihong Wang.36 A pencil photon
beam is normally incident upon the semi-infinite turbid medium.
The Henyey–Greenstein phase function is assumed for the cal-
culation of the scattering angle. The spatial resolution of the
steady-state Monte Carlo simulations is 0.1 mm and the number
of initial photons is 108.

3.1 Comparison of the Different Methods for
Computing the Inverse Fourier Transform

The spatially resolved reflectance from N-layered turbid me-
dia was calculated using the two methods (IFT1 and IFT2).
Figure 2 compares the reflectance from a semi-infinite three-
layered turbid medium calculated with IFT1 and IFT2. It can
be seen that the differences between the two methods are less
than 10− 3 using MATLAB language (15 to 16 significant dig-
its; 8 bytes). The results are ascribed to the fact that the Fourier
and Henkel transforms are mathematically equivalent in circum-
stances of circular symmetry.

Although these two methods are the mathematically simple
methods to compute the inverse Fourier transform, they require
lengthy calculation times. If a short calculation time is preferred,
one can use the C or the Pascal language and the existing algo-
rithms for a fast Fourier transform, which results in calculation
times less than 10 ms.20
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Fig. 2 Comparison of the reflectance from a semi-infinite three-layered
turbid medium calculated with IFT1 and IFT2. The medium is three-
layered with optical properties of μa1 = 0.1 mm− 1, μa2 = 0.01 mm− 1,
μa3 = 0.001 mm− 1, μs1

′ = 1.2 mm− 1, μs2
′ = 1.1 mm− 1, μs3

′ = 1.3
mm− 1, n1 = 1.4, n2 = 1.7, and n3 = 1.4, respectively. The thicknesses
of the three layers are l1 = 1 mm, l2 = 5 mm, and l3 = ∞, respectively.

3.2 Results for the Case of Small Absorption
Coefficients

Figure 3 shows a comparison of the semi-infinite three-layered
diffusion equation and hybrid diffusion-P3 equation with the
Monte Carlo simulations in the case of low absorption co-
efficients. The absorption coefficients of the three layers are
μa1 = 0.01 mm− 1, μa2 = 0.1 mm− 1, and μa3 = 0.001 mm− 1,
respectively. The reduced scattering coefficients of the three
layers are μs1

′ = 1.2 mm− 1, μs2
′ = 1.1 mm− 1, and μs3

′

= 1.3 mm− 1, respectively. The thicknesses of the three lay-
ers are l1 = 5 mm, l2 = 5 mm, and l3 = ∞, respectively. A good
agreement among the diffusion equation, the hybrid diffusion-
P3 equation, and the Monte Carlo simulations can be observed.

Fig. 3 Comparison of the solution of the semi-infinite three-layered dif-
fusion equation (solid curve) and hybrid diffusion-P3 equation (dashed
curve) with Monte Carlo simulations (circles). The medium is three-
layered with optical properties of μa1 = 0.01 mm− 1, μa2 = 0.1 mm− 1,
μa3 = 0.001 mm− 1, μs1

′ = 1.2 mm− 1, μs2
′ = 1.1 mm− 1, μs3

′ = 1.3
mm− 1, n1 = 1.4, n2 = 1.7, n3 = 1.4, g1 = 0.8, g2 = 0.8, g3 = 0.8,
respectively. The thicknesses of the three layers are l1 = 5 mm, l2 = 5
mm, l3 = ∞, respectively.
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Fig. 4 Relative difference of the curves shown in Fig. 3.

Figure 4 gives the relative differences of the diffusion equation
and the hybrid diffusion-P3 equation to the Monte Carlo sim-
ulations. At the radial distances of 0.5 mm < ρ < 12 mm, the
differences are smaller than 5% with the noises of the Monte
Carlo simulation and the numerical calculation accounted for.
For large radial distances (ρ > 12 mm), the differences are
smaller than 10% with the larger noises.

We can observe from Figs. 3 and 4 that the solutions between
the diffusion equation and the hybrid diffusion-P3 equation are
nearly the same when the absorption coefficient is small. As can
be seen in Sec. 2.2, the hybrid diffusion-P3 equation is obtained
by replacing Dk with Dasym k . The main difference between
the diffusion equation and the hybrid diffusion-P3 equation is
the diffusion coefficient D of the diffusion equation and the
asymptotic diffusion coefficient Dasym of the hybrid diffusion-P3
equation. Figure 5 gives the comparison between the diffusion
coefficient D and the asymptotic diffusion coefficient Dasym in
the range of μa . It can be observed from the results that as the ab-
sorption coefficient decreases, the values of the two coefficients
(Dk andDasym k) become identical. Thus, it can be concluded
that as the absorption coefficient decreases, the solutions for the
N-layered diffusion equation and hybrid diffusion-P3 equation

Fig. 5 Comparison of the diffusion coefficient D and asymptotic dif-
fusion coefficient Dasym as a function of the absorption coefficient
assuming μs1

′ = 1.2 mm− 1, g = 0.8.

Fig. 6 Comparison of the solution of the semi-infinite three-layered dif-
fusion equation (solid curve) and hybrid diffusion-P3 equation (dashed
curve) with Monte Carlo simulations (circles). The medium is three-
layered with optical properties of μa1 = 1 mm− 1, μa2 = 0.5 mm− 1,
μa3 = 0.001 mm− 1, μs1

′ = 1.2 mm− 1, μs2
′ = 1.1 mm− 1, μs3

′ = 1.3
mm− 1, n1 = 1.4, n2 = 1.7, n3 = 1.4, g1 = 0.8, g2 = 0.8, g3 = 0.8,
respectively. The thicknesses of the three layers are l1 = 1 mm, l2 = 5
mm, l3 = ∞, respectively.

are almost equivalent. The conclusion of this section accords
with that from Liemert and Kienle’s paper.20

3.3 Results for the Case of Large Absorption
Coefficients

Figure 6 shows a comparison of the semi-infinite three-layered
diffusion equation and hybrid diffusion-P3 equation with the
Monte Carlo simulations in the case of large absorption coef-
ficients. The absorption coefficients of the three layers are μa1

= 1 mm− 1, μa2 = 0.5 mm− 1, and μa3 = 0.001 mm− 1, respec-
tively. The reduced scattering coefficients of the three layers are
μs1

′ = 1.2 mm− 1, μs2
′ = 1.1 mm− 1, and μs3

′ = 1.3 mm− 1, re-
spectively. The thicknesses of the three layers are l1 = 1 mm, l2
= 5 mm, and l3 =∞. The results in Fig. 6 show that in the case of
large absorption coefficients, the hybrid diffusion-P3 equation
agrees well with the Monte Carlo simulation results, while R(ρ)
calculated with the N-layered diffusion equation is not close to
that of the Monte Carlo simulations. Figure 7 gives the relative
differences between the N-layered diffusion equation and the
N-layered hybrid diffusion equation to the Monte Carlo simula-
tions. At small distances (ρ < 2 mm), both the diffusion equation
and the hybrid diffusion-P3 equation greatly deviate from the
Monte Carlo simulations. At the radial distances of 2 mm <

ρ < 4.7 mm, the differences between the hybrid diffusion-P3
equation and the Monte Carlo simulations are less than 20%.
For the large distances of 4.7 mm < ρ < 6 mm, the differ-
ences are less than 8%. However, the differences between the
diffusion equation and the Monte Carlo simulations are larger
than 20%. The results suggest that the diffusion equation is not
valid for the case of large absorption coefficients. From the re-
sults in Figs. 6 and 7, it can be concluded that the model of
the hybrid diffusion-P3 equation is more precise than the diffu-
sion equation for the case of a medium with a large absorption
coefficient.
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Fig. 7 Relative difference of the curves shown in Fig. 6.

Figure 8 shows another example of the semi-infinite five-
layered turbid media for large absorption coefficients. The ab-
sorption coefficients of the five layers are μa1 = 0.5 mm− 1, μa2

= 0.2 mm− 1, μa3 = 0.1 mm− 1, μa4 = 0.3 mm− 1, and μa5

= 0.001 mm− 1, respectively. The thicknesses of the five layers
are l1 = 1 mm, l2 = 1 mm, l3 = 1 mm, l4 = 2 mm, and l5
= ∞, respectively. The results show that the hybrid diffusion-
P3 equation is more similar to the Monte Carlo simulations than
the diffusion equation. Figure 9 gives the relative differences
between the N-layered diffusion equation and the N-layered hy-
brid diffusion-P3 equation to the Monte Carlo simulations. At
the radial distances of 1.6 mm < ρ < 2.5 mm, the differences
between the hybrid diffusion-P3 equation and the Monte Carlo
simulations is from 0 to 10%, and for the large distances of 2.5
mm < ρ < 6 mm, the differences between the hybrid diffusion-
P3 equation and the Monte Carlo simulations are less than 20%.

Fig. 8 Comparison of the solution of the semi-infinite five-layered dif-
fusion equation (solid curve) and hybrid diffusion-P3 equation (dashed
curve) with Monte Carlo simulations (circles). The medium is five-
layered with optical properties of μa1 = 0.5 mm− 1, μa2 = 0.2
mm− 1, μa3 = 0.1 mm− 1, μa4 = 0.3 mm− 1, μa5 = 0.001 mm− 1,
μs1

′ = 1.2 mm− 1, μs2
′ = 1.1 mm− 1, μs3

′ = 1.4 mm− 1, μs4
′ = 1.3

mm− 1, μs5
′ = 1.1 mm− 1, n1 = 1.4, n2 = 1.5, n3 = 1.6, n4 = 1.7, n5

= 1.4, g1 = 0.8, g2 = 0.8, g3 = 0.8, g4 = 0.8, g5 = 0.8, respectively.
The thicknesses of the five layers are l1 = 1 mm, l2 = 1 mm, l3 = 1
mm, l4 = 2 mm, l5 = ∞, respectively.

Fig. 9 Relative difference of the curves shown in Fig. 8.

Fig. 10 (a) Comparisons among the solution of the diffusion equation
(solid curve), the hybrid diffusion-P3 equation (dashed curve), and
the Monte Carlo simulations (circles) for semi-infinite three-layered
medium. The medium is three-layered with optical properties of μa1 =
0.6 mm− 1, μa2 = 0.8 mm− 1, μa3 = 0.001 mm− 1, μs1

′ = 1.2 mm− 1,
μs2

′ = 1.1 mm− 1, μs3
′ = 1.3 mm− 1, n1 = 1.4, n2 = 1.7, n3 = 1.4,

g1 = 0.8, g2 = 0.8, g3 = 0.8, respectively. The thicknesses of the three
layers are l1 = 2 mm, l2 = 3 mm, l3 = ∞, respectively. (b) Relative
difference between the curves and circles shown in (a).
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Fig. 11 (a) Comparisons among the solution of the diffusion equation
(solid curve), the hybrid diffusion-P3 equation (dashed curve), and the
Monte Carlo simulations (circles) for semi-infinite five-layered medium.
The medium is five-layered with optical properties of μa1 = 1 mm− 1,
μa2 = 0.4 mm− 1, μa3 = 0.2 mm− 1, μa4 = 0.1 mm− 1, μa5 = 0.001
mm− 1, μs1

′ = 1.2 mm− 1, μs2
′ = 1.1 mm− 1, μs3

′ = 1.4 mm− 1, μs4
′

= 1.3 mm− 1, μs5
′ = 1.1 mm− 1, n1 = 1.4, n2 = 1.5, n3 = 1.6, n4

= 1.7, n5 = 1.4, g1 = 0.8, g2 = 0.8, g3 = 0.8, g4 = 0.8, g5 = 0.8,
respectively. The thicknesses of the three layers are l1 = 3 mm, l2 = 1
mm, l3 = 1 mm, l4 = 1 mm, l5 = ∞, respectively. (b) Relative difference
between the curves and circles shown in (a).

At small distances (ρ < 1.6 mm), the differences are largely
affected by the light source. However, the differences between
the diffusion equation and the Monte Carlo simulations are 0 to
45% for radial distances greater than 1.6 mm.

From Figs. 6 and 8, it can be seen that the hybrid diffusion-
P3 equation is more precise than the diffusion equation for
modeling light propagation in the N-layered semi-infinite me-
dia with large absorption coefficients. In order to investigate
the versatility of this conclusion, the medium with different
optical properties and geometries have been investigated. Con-
cerning the article length, only a few results are illustrated in
Figs.10–12. The results also demonstrate the accuracy of the
hybrid diffusion-P3 equation for modeling light propagation
in the N-layered semi-infinite media with large absorption
coefficients.

Fig. 12 (a) Comparisons among the solution of the diffusion equation
(solid curve), the hybrid diffusion-P3 equation (dashed curve), and
the Monte Carlo simulations (circles) for semi-infinite seven-layered
medium. The medium is seven-layered with optical properties of μa1
= 0.8 mm− 1, μa2 = 0.5 mm− 1, μa3 = 0.3 mm− 1, μa4 = 0.4 mm− 1,
μa5 = 0.2 mm− 1, μa6 = 0.1 mm− 1, μa7 = 0.001 mm− 1, μs1

′ =
1.2 mm− 1, μs2

′ = 1.1 mm− 1, μs3
′ = 1.3 mm− 1, μs4

′ = 1.2 mm− 1,
μs5

′ = 1.1 mm− 1, μs6
′ = 1.3 mm− 1, μs7

′ = 1.2 mm− 1, n1 = 1.4,
n2 = 1.5, n3 = 1.6, n4 = 1.4, n5 = 1.7, n6 = 1.6, n7 = 1.5, g1 = 0.8,
g2 = 0.8, g3 = 0.8, g4 = 0.8, g5 = 0.8, g6 = 0.8, g7 = 0.8, respectively.
The thicknesses of the three layers are l1 = 1 mm, l2 = 1 mm, l3 =
1 mm, l4 = 1 mm, l5 = 1 mm, l6 = 1 mm, l7 = ∞, respectively. (b)
Relative difference between the curves and circles shown in (a).

4 Discussion
This paper discusses light propagation in N-layered turbid me-
dia. The solution of the hybrid diffusion-P3 equation is derived
for N-layered finite or infinite turbid media. The solution is cal-
culated in the steady-state domain for one point source using the
extrapolated boundary condition. The Fourier transform formal-
ism is applied to derive the analytical solutions of the fluence rate
in the Fourier space based on the derivation of the N-layered dif-
fusion equation from Liemert and Kienle’s paper. The numerical
calculation is performed to obtain the solutions for the fluence
rate in real space because of the difficulty of obtaining analytical
solutions. Two inverse Fourier transform methods are developed
to calculate the fluence rate in real space.

In addition, the solution of the hybrid diffusion-P3 equa-
tion having an infinite or finite thick Nth layer is compared to
that of the diffusion equation and Monte Carlo simulations. The
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main difference between the diffusion equation and the hybrid
diffusion-P3 equation is the diffusion coefficient D of the diffu-
sion equation and the asymptotic diffusion coefficient Dasym of
the hybrid diffusion-P3 equation. The values of two coefficients
(Dk andDasym k) become identical as the absorption coefficient
decreases, thus it can be concluded that as the absorption coeffi-
cient decreases, the solutions of the N-layered diffusion equation
and hybrid diffusion-P3 equation are almost equivalent. Simu-
lation results show that, in the case of small absorption coef-
ficients, the solutions of the N-layered diffusion equation and
hybrid diffusion-P3 equation are almost equivalent and are in
agreement with the Monte Carlo simulations. Additionally, we
discussed the situation of the semi-infinite three-layered, five-
layered, and seven-layered turbid media for the case of large
absorption coefficients. It can be observed that the model of
the hybrid diffusion-P3 equation is closer to the Monte Carlo
simulation than the diffusion equation. Finally, we can make the
conclusion that the model of the hybrid diffusion-P3 equation
can replace the diffusion equation for light propagation in the
turbid media for a wide range of absorption coefficients. The
hybrid diffusion-P3 equation also has greater potential appli-
cations in the field of biomedical photonics than the diffusion
equation.

Note that the derived solutions must satisfy the condition of
one point source in the first layer l1 > z0. As a result, the model
of the N-layered hybrid diffusion-P3 equation cannot be applied
to situations in which the first layer is very thin. In the future,
we will be committed to solve this problem and study other
boundary conditions and source terms to obtain more accurate
solutions at small radial distances (ρ < 2 mm).
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