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Abstract. The Gemini Planet Imager Exoplanet Survey (GPIES) is a multiyear direct imaging survey of 600 stars
to discover and characterize young Jovian exoplanets and their environments. We have developed an automated
data architecture to process and index all data related to the survey uniformly. An automated and flexible data
processing framework, which we term the Data Cruncher, combines multiple data reduction pipelines (DRPs)
together to process all spectroscopic, polarimetric, and calibration data taken with GPIES. With no human inter-
vention, fully reduced and calibrated data products are available less than an hour after the data are taken to
expedite follow up on potential objects of interest. The Data Cruncher can run on a supercomputer to reprocess
all GPIES data in a single day as improvements are made to our DRPs. A backend MySQL database indexes all
files, which are synced to the cloud, and a front-end web server allows for easy browsing of all files associated with
GPIES. To help observers, quicklook displays show reduced data as they are processed in real time, and chatbots
on Slack post observing information as well as reduced data products. Together, the GPIES automated data
processing architecture reduces our workload, provides real-time data reduction, optimizes our observing strategy,
and maintains a homogeneously reduced dataset to study planet occurrence and instrument performance. © 2018
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1 Introduction
The Gemini Planet Imager (GPI) is a high-contrast imaging
instrument on the Gemini South Telescope designed to directly
image young, recently formed exoplanets and their planet-form-
ing environments.1,2 To suppress the glare of the bright host star
to see faint planets and circumstellar material, GPI is equipped
with a high-order adaptive optics (AO) system to correct for
atmospheric turbulence3 and an apodized-pupil Lyot corona-
graph to suppress diffraction from the star.4 To image and char-
acterize planets and disks, an infrared integral field spectrograph
(IFS) sits behind the AO system and coronagraph. The IFS uses
a microlens array to disperse light from a 2.8 × 2.8 arc sec field
of view onto a HAWAII 2-RG detector in one of the five filters,
Y, J, H, K1, and K2, where K-band has been split into two
filters. The IFS supports both a spectral mode, with a spectral
resolving power R between 30 and 80 depending on the wave-
length, and a polarimetry mode that allows for broadband
imaging polarimetry using a Wollaston prism and a rotating
waveplate.5–7

The GPI Exoplanet Survey (GPIES) is a multiyear survey of
600 young, nearby stars with GPI to discover new planets, char-
acterize the orbits and atmospheres of directly imaged planets,
constrain giant planet occurrence rates, and resolve planet-form-
ing environments. GPIES is searching for planets in spectral
mode in H-band around 600 stars, following up and character-
izing planet candidates in multiple wavelength bands at multiple
epochs, and looking for resolved circumstellar material in polar-
ized, scattered light around a subset of stars.

From both a technical and scientific perspective, GPIES
requires an automated infrastructure to handle the data
associated with the survey. Technically, both the size and
complexity of data processing requirements make manual book-
keeping impractical. Over several years, GPIES will accumulate
>30;000 raw frames of science data and a roughly equal number
of raw frames of calibration data. Although this is not close to
the scale of the largest surveys in astronomy, it is large enough
that we need automated methods to track and organize the data.
Additionally, data reduction for GPIES is nontrivial, requiring a
pipeline to reduce IFS data and complex algorithms to model
and subtract out the diffracted light from the host stars. For
each raw IFS frame, we must calibrate and extract ∼35;000
microspectra from the detector to make a single spectral data-
cube. If we consider each wavelength slice of each spectral
datacube as an individual frame for data processing, which
effectively is how it gets treated, then we will need to subtract
the diffracted light of the star from over one million frames using
multiple algorithms to mitigate algorithmic biases. To maintain
data consistency, we need an automated system to reprocess all
of our data as upgrades and bug fixes are applied to our data
reduction pipelines (DRPs).

Scientifically, we need the infrastructure to make sense of all
the data from GPIES. Consistently processed data are important
to maintain a homogeneous dataset to use for statistical planet
occurrence studies. Being able to easily access specific data
from across the entire survey is important to understand trends
in instrument performance, inform observing strategies, and
prioritize future instrument upgrades. Finally, having real-time
processing during the observing night is extremely advanta-
geous for optimizing observing strategy. Fully reduced data
that are processed and displayed in real time help observers
assess the data quality being achieved. It also allows observers
to identify candidate companions within an hour of the

observations so that the most promising candidates can be
followed up the same night or the following night.

Thus, we have built an automated data processing infrastruc-
ture capable of storing all of the data, processing all science and
calibration data in real time, reprocessing the entire campaign
as necessary, and providing powerful but easy-to-use tools to
search across all data from the survey. The individual compo-
nents and how they fit together are shown in Fig. 1.

The different components that comprise the data infrastruc-
ture, including the Data Cruncher, a key component that
automatically reduces all GPIES data, are described in Sec. 2.
In Sec. 3, we describe the benefits of this automated architecture
for observing, data processing efficiency, instrument perfor-
mance, and survey statistics. Finally, in Sec. 4, we conclude
with plans for future steps to take for the automated data
processing architecture. We also include two appendices:
Appendix A details all of the data reduction steps for GPIES,
which we have automated, and Appendix B describes the soft-
ware implementation of the Data Cruncher.

2 Components of the Automated GPIES Data
Infrastructure

Briefly, we will summarize the data reduction detailed in
Appendix B to give context for this data infrastructure. For
each star observed in GPIES, the GPI DRP is used to turn
raw IFS data into spectral datacubes with two spatial dimensions
and one spectral dimension. To see planets in the spectral data-
cubes, “stellar PSF subtraction” algorithms take advantage of
the angular differential imaging (ADI)8 and spectral differential
imaging (SDI)9 observing techniques to remove the point spread
function (PSF) of the star, which for these coronagraphic images
is the diffracted light of the star behind the occulting mask. Two
stellar PSF subtraction algorithms are used: pyKLIP and cADI,
which are described in Appendix A.2.2. Then, the sensitivity of
each dataset to planets is computed. In this paper, we will use
the term “contrast” to refer to the flux ratio between the faintest
planet we can detect and its star, and the term “contrast curve” to
refer to our achieved contrasts in a dataset as a function of
projected separation from the star. Stars with debris disks are
imaged in broadband polarimetry mode, and the data are proc-
essed to remove the unpolarized stellar light to look for polar-
ized light from small dust grains. To process the science data,
calibration files for both our spectral and polarimetry mode data
are also reduced.

To automatically download, index, process, and display all
this data from GPIES, multiple components have been inte-
grated together to form the automated data infrastructure.
Figure 1 shows a schematic of the various parts of the infra-
structure, which we will discuss in detail here. Roughly, the
infrastructure is divided into data acquisition and storage,
data processing, and front-end interfaces. In Sec. 2.1, we will
describe the data acquisition and storage: data tools for quick-
look quality checking on the summit (Sec. 2.1.1), the database
that stores all of the metadata, target information, and planet
sensitivity curves (Sec. 2.1.2), and Dropbox, which stores the
raw and reduced images as well as AO telemetry (Sec. 2.1.3).
Next in Sec. 2.2, we will describe the functionality of the Data
Cruncher, the automated data processing framework that auto-
matically processes all science and calibration data from GPIES.
Quicklook software, including one from the separate TLOCI
pipeline,10 that creates real-time displays of the current observ-
ing sequence is discussed in Sec. 2.3. The rest of this section is
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dedicated to our front-end interfaces. Our main user-facing front
end is the “Web Thingie,” which hosts views into our database
as well as observing tools (Sec. 2.4). We also describe how
collaborative tools such as Slack and our internal wiki are
integrated into our automated data infrastructure (Sec. 2.5).

2.1 Data Acquisition and Storage

A substantial amount of data is being generated by GPIES.
About 3 years into the survey, we have accumulated ∼23;000
raw science files and ∼26;000 raw calibration files. Including
reprocessed data, we have generated ∼27;000 quicklook
datacubes, ∼5600 reduced calibration files, ∼80;000 science-
grade datacubes, ∼68;000 stellar-PSF-subtracted images, and
∼61million contrast curve data points. In addition to the science
data, we also have ∼73;000 raw telemetry files produced by the
AO system to monitor its performance, the observing status of
all 600 targets in the survey, and also information on the target
stars themselves. To handle all of the data while also making it
available to the entire collaboration, we use a combination of
Dropbox and a MySQL database to store the data.

2.1.1 Summit quicklooks and data download

After new IFS data are taken on the summit, an instance of the
GPI DRP running on the summit uses the GPI DRP autoreducer
module to automatically perform quicklook reductions of the
data. These quicklook reductions allow observers to assess
data quality and, for science data, provide a contrast curve to
demonstrate the sensitivity achieved in a single frame of data
for understanding observing conditions. If the data are rendered
unusable due to issues such as AO control loops opening or
wind-shake moving the star off of the coronagraph mask, the
observer can log that particular file as bad through the GPItv
interface in the GPI DRP. The summit quicklook reductions pro-
vide observers the basic tools to assess data quality so that

observing can continue in the unlikely case the observatory net-
work connection fails and renders the rest of the data infrastruc-
ture ineffective. During an observing sequence, the observer
also periodically takes AO telemetry data every 5 to 10 min to
allow for further analysis of AO system performance.

To move the data off the summit, automated scripts down-
load the raw and quicklook science data as well as the AO telem-
etry data to a server located at Cornell University that hosts the
MySQL database. While AO telemetry data are downloaded
during daytime hours to avoid saturating the network bandwidth
during the night, IFS frames are written at a rate of fewer than
one per minute, so it is downloaded in real time along with the
bad-files log without using significant network resources. The
server at Cornell University then uploads the data and metadata
to Dropbox and the database, respectively.

2.1.2 Database

After receiving new data, the Cornell server adds entries for all
of the data into a MySQL database. For all of the science and
calibration data taken by the IFS, header information and meta-
data get uploaded into the raw and reduced data tables. The raw
table contains one row for each raw file, with one column for
each of the fields in the file headers (e.g., observing mode,
wavelength band, time of observation), along with a column
for the unique identifier (ID) for each file. The reduced table
contains one row for each reduced file, produced either by
the quicklook GPI DRP on the summit or by the Data
Cruncher afterward. The reduced data table contains informa-
tion after some data processing has happened such as whether
the data product is a quicklook or science-grade reduction, the
sensitivity achieved at some fiducial separations, flux calibration
conversions, as well as a unique ID for the reduced file. To link
the reduced data to their original raw data products, a third
“Raw2Reduced” table is a two-column table where each row
associates one raw file ID with one reduced file ID. Multiple

Fig. 1 Schematic of the GPIES automated data processing infrastructure. Boxes represent the different
components of the infrastructure that are described in Sec. 2. The boxes are colored so that black rep-
resents the telescope, blue represents data storage, orange represents data processing modules, and
teal represents user-facing services. Arrows indicate the flow of data or information from one component
to another.
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rows can specify that multiple raw files went into producing one
reduced file. Similarly, multiple rows could contain multiple
reduced files that all used a single raw file, but not necessarily
exclusively that raw file. Contrast curves associated with a given
reduction (either quicklook contrast curves from the summit or
Data Cruncher contrast curves) are stored in a contrast curve
table where each row is the contrast for a given reduced file
at a given separation. Lastly, the bad-files log is appended
into the observing notes table, which contains notes on each
data frame. A row consists of a text comment, whether the
bad-file flag was enabled, the user that submitted it, and time
it was submitted, and the associated raw data file it pertains
to. Multiple rows can correspond to a single file to give a history
of bad-file marking.

Similarly, the AO data have a raw data table and a reduced
data table in a similar fashion as the IFS data, but with AO-rel-
evant metadata stored in each of the tables (e.g., the wavefront
sensor frame rate, spatial filter size, and seeing). To make the
most out of the AO data, there exist tables that link the raw
AO data to reduced AO data and the raw AO telemetry to
raw IFS data. The latter table allows AO performance metrics
to be linked to final sensitivity to planets.

In the database, there also exist tables for GPIES targets. To
keep track of the large GPIES target list, we use several target
tables. The basic target table contains information on the target
such as the celestial coordinates, an estimate for the age of the
system, and the target ID number. Then, there is a table with all
of the photometry in the literature on each target, a table of name
aliases for each target, a table of binary companions associated
with each target, a table with spectral energy distribution fits for
each target, a table with the Gemini Observing Tool observing
sequence numbers for each target, and a table of observing
statuses (e.g., observed, incomplete, and candidate companion).

2.1.3 Dropbox

After the data are logged into the database, the raw and quick-
look reductions are uploaded onto Dropbox. The raw and sum-
mit-reduced quicklook data are put into a read-only directory, as
they are not meant to be modified again. After the raw data are
synced to Dropbox, the Data Cruncher can then read and process
the data automatically. The automatically reduced data from the
Data Cruncher also gets synced back onto Dropbox, and then
their metadata also stored into the database. All of the AO telem-
etry is also stored and synced on Dropbox in its own folder.

Sometimes, it is necessary to reduce data by hand, especially
when there is an astrophysical source that requires further analy-
sis. In these cases, individuals also upload their own reductions
and analysis outputs onto Dropbox so that they can be shared
with others. The only restriction is that these data products
lie outside of the automatically generated directories, to avoid
being erased or moved. This is because after the Data
Cruncher reprocesses the entire campaign, all of the automati-
cally generated folders get moved into an archive section of
Dropbox, and new reductions are moved into its place. The
archive contains subdirectories, each with an older version of
all of the data reduced in the survey by the Data Cruncher.

2.2 Data Cruncher

The Data Cruncher is a Python framework that automates all of
the data processing steps detailed in Appendix A. The Data
Cruncher is comprised of two parts: the “processing backend”

(Appendix B.1) runs the various DRPs and controls the flow of
data through the pipelines, while a series of “instructors”
(Appendix B.2) sends commands to the processing backend
about what data to process. Figure 2 shows how the instructors
and processing backend fit together to generate data products for
the survey. By separating the code between a unit that focuses on
the data processing and a unit that focuses on what data to proc-
ess, we are able to develop a modular and flexible framework.
This allows us to scale the Data Cruncher arbitrarily: multiple
instructors can use the same processing backend to process data
for multiple purposes, or a single instructor can talk to many
processing backends when a large amount of data needs to
be processed in a parallel fashion.

The detailed software implementation of the Data Cruncher,
including the details on the instructors and processing backends,
is discussed in Appendix B. At a high abstraction level, one can
think of the Data Cruncher as being able to produce all of the
desired data products given some raw GPI data. Here, we will
focus on the functionality of the Data Cruncher for GPIES.

2.2.1 Real-time reductions

When a raw data file is uploaded to Dropbox, the “realtime scan-
ner” instructor is alerted and decides how to instruct the process-
ing backend to process the file depending on the context in
which the file is taken. For example, if a new raw science
frame is downloaded, the realtime scanner will just instruct
the generation of a datacube from the raw 2-D file and the updat-
ing of the quicklook stellar PSF subtractions (described in
Sec. 2.3) if the object name in its file header is the same as
the previous file’s. However, it will also send instructions for
the full stellar PSF subtraction of the current data sequence if
the object name is different, since this indicates that the observ-
ers have moved on to a new target. The realtime scanner is able
to handle all standard observing procedures for all spectral,
polarimetry, and calibration data taken as part of GPIES. The
only exception is that the realtime scanner is not programmed
to handle processing thermal background frames and sub-
tracting them from the entire sequence. However, we find
that thermal background subtraction is necessary only in
K-band for extended sources such as circumstellar disks, for
which we need to distinguish between the large-scale astro-
physical emission of the disk from the smooth thermal back-
ground. K-band imaging of disks is not a science-goal of
GPIES, so this happens only when the Data Cruncher processes
queue programs led by GPIES members. In these cases, manual
reductions need to be performed.

On a 32-core machine with AMD Opteron 6378 processors
clocked at 2.3 GHz, the Data Cruncher generates quicklook
reductions within 1 min of receiving the data, generates the
first pyKLIP reduction 10 min after a sequence finishes, and
generates fully calibrated contrast curves for both L- and
T-type planets 1 h after a sequence is complete.

2.2.2 Reprocessing individual datasets

Sometimes, a single dataset needs to be reprocessed to exclude
bad frames or to fix bugs in the reduction pipelines. The reproc-
essor module allows us to query the database for certain
datasets, find the corresponding files, and process them. For
a specified target, the user can request for data taken at a
given wavelength band, on a given date, in a given observing
mode, and in a given observing program (whether GPIES or
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an affiliated proposal by GPIES team members) to be processed.
The user can also specify whether to process the data completely
from raw data, or to use the reduced datacubes and run only
specified postprocessing algorithms. For example, a user can
ask to reprocess all data on a target taken in polarimetry
mode when upgrades to the GPI DRP’s polarimetry reduction
functions happen. A user could also ask to regenerate the con-
trast curves for a given target at a given band to exclude files
where the data quality was poor.

2.2.3 Reprocessing the entire campaign

When the Data Cruncher runs on a supercomputer, we call the
framework the Super Data Cruncher. Many nodes, each a single
computer, are requested, and each node runs one instance of the
processing backend to parallelize the embarrassingly parallel
problem of reprocessing the entire campaign. A single node
is designated the controlling node and sends commands to all
of the processing backends to split up the work. The Super
Data Cruncher has successfully run on the Edison and Cori
machines operated by the National Energy Research Scientific
Computing Center (NERSC) as well as the Comet machine
operated by the San Diego Supercomputer Center (SDSC) as
part of the Extreme Science and Engineering Discovery
Environment (XSEDE).11 On Comet, using 30 nodes, with
24 cores per node for a total of 720 cores, we used 16,560
CPU hours, corresponding to 22.9 h of wall-clock time, to
reprocess all survey data up to the end of 2016 (17,008 frames
of raw IFS data).

2.3 Quicklooks

During the observing night as data are taken and reduced in real
time, quicklook tools translate the data into easy-to-view images
that are constantly refreshed as new data come in. Currently,

we run three quicklook tools, which update every minute as
new data are taken. Each quicklook tool syncs images to a
certain location on Dropbox so that it can be picked up and
displayed on web pages on the Web Thingie.

The first is the cADI quicklook tool. The Data Cruncher pro-
duces the two cADI reductions of spectral mode data described
in Appendix A.2.2 every time new frames are taken and
uploaded to Dropbox. The cADI quicklook tool takes these
reductions and creates a four-panel plot to display stellar-
PSF-subtracted images (Fig. 3). The top two images of the
plot are just the data without any further processing. The bottom
two images are the signal-to-noise ratio (SNR) maps of the data
after convolving the data with a Gaussian function and weighing
each pixel by the inverse of the noise in pixels of similar sep-
arations from the star.

The second is the TLOCI quicklook display, which uses
stellar-PSF-subtracted spectral mode data from the TLOCI
pipeline,10 independent of the Data Cruncher. The TLOCI
pipeline typically uses the quicklook spectral datacubes made
on the summit so that it does not rely on the Data Cruncher
for datacubes but can be modified to point at the spectral data-
cubes made by the Data Cruncher. The TLOCI quicklook dis-
play offers four plots, two for L-dwarf reductions and two for
T-dwarf reductions. For each spectral type, there is a reduction
done by a quick simple code, and a slower, but more sophisti-
cated code. TLOCI quicklook display also offers a simple planet
detection code and quicklook astrometry and spectra of candi-
dates flagged by the planet detection code.

The last is the polarimetry quicklook display generated by
the Data Cruncher through the GPI DRP. This updates after
every four images (corresponding to a full cycle of waveplate
positions) and displays images from both the linear and radial
Stokes cubes produced by the Data Cruncher that is described in
Appendix A.3.2.

Realtime scanner

Tracks observing status
realtime processing

Reprocessor

Queries database to find 
specific data to proccess

Network 
interface

Recieves 
commands

 GPIFileprocessor

Controls the flow of data 
through the various 
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(Perrin et al. 2016)

pyKLIP
(Wang et al. 2015)
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cADI
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Realtime PSF 
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Fig. 2 Schematic of the Data Cruncher architecture. Boxes represent the different modules of the Data
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2.4 Web Thingie: Web Front End for Database and
Observing Tools

Between all of the raw, reduced, calibration, and AO telemetry
data generated by the GPIES campaign, it quickly becomes hard
to track down the specific files taken on specific dates, and the
associated reductions. Instead of requiring users to make SQL
queries to the database themselves when they need to look for
data, we have created a user-friendly web front end, named the
Web Thingie, to allow users to find data, mark files as bad, pick
targets, and look at real-time stellar PSF subtractions.

TheWeb Thingie is run on an Apache-based web server gate-
way interface using Flask, a Python, Werkzeug-based web
development framework. It uses Jinja2 to dynamically generate
web pages from database queries. For example, instead of static
web pages, the pages that list all raw files taken on each date are
generated from one template page with the date populated by the
user requested date and rows of a raw files table populated from
a database query. The Web Thingie can generate a page for any
individual raw or reduced file stored on Dropbox, for raw files
taken on a specific date, for raw files corresponding to a specific
object, for raw files of a given calibration file type, for a calendar
indicating dates under each month in which GPI data were
taken, among others.

Typically users are interested in data taken on a specific date
or of a specific object, so going to those pages will list all data
from that date or object including the instrument configuration,
wavelength, time, and the data quality of the file. Once they do
click on an individual raw file, a web page following the same
template as the one shown in Fig. 3 is generated. There is a
thumbnail image of the raw data frame, a list of important header
keywords, a link to a page that lists all the reduced data products
that used this raw data frame, existing notes on this data frame,
and the ability to add more notes and mark whether this frame is
bad or not. If the data frame is bad, a large text banner in red font
on the top of the page indicates that. When the user clicks
through to the list of all the reduced data, they can scroll through

and click on the desired reduced file to go to its page for more
information on the reduction.

Each target also gets its own page to help observers during a
run. On the top of the page, there are links to the SIMBAD page
for the target, the internal wiki page for the target, and the finder
chart for crowded field stars. Then, the status of the target is
listed regarding whether spectral or polarimetry data needs to
be taken. Basic information on the star as well as binary com-
panions and their separation and position angle are listed next, to
help observers pick the right star at the telescope. The page ends
with a series of data quality plots, which are generated dynami-
cally. The first set of plots shows single-frame contrast, AO
wavefront error, and satellite spot flux as a function of image
number for all observing sequences on this target. These metrics
indicate how conditions change over an observing sequence and
allow for comparison to previous observing sequences on the
same target. The second set of plots displays the histograms
of all single-frame contrasts for all targets in the database, all
targets within 0.25 magnitudes, and all previous data from
the same star. It also displays the 16th, 50th, and 84th percentile
single-frame contrasts for all targets within 0.25 magnitudes.
This allows observers to quickly compare the quality of the
data from the summit quicklook reductions that they are cur-
rently taking and see how they compare to the rest of the cam-
paign, allowing for a straightforward assessment of data quality.

To maintain target selection flexibility, dynamically gener-
ated target selection tools are also available on the Web Thingie.
At any given time of the night, a dynamic target list page auto-
matically orders targets by a parameterized score12,13 that is
a combination of the inherent proprieties of the system (e.g.,
age and distance) as well as how easily observable the target
is (e.g., targets that transit directly overhead need to be observed
just before transit for maximum field rotation for ADI). The list
can also be trimmed to look at only bright stars, or to avoid tar-
gets that require the telescope to point in the current direction of
the wind. The list also flags whether polarimetry observations
are needed, alerts observers to binary stars with colorfully

Fig. 3 Example screenshots of the user-facing web front ends that are integrated with the data process-
ing infrastructure. (a) A dynamically generated page from the Web Thingie for one single raw data file.
This is one of multiple types of pages the Web Thingie can generate. (b) The real-time cADI quicklook
display that is automatically generated and updated in real time on the Web Thingie. (c) An example of
the observing support provided by the Slack chatbots. Even though the weather was poor, the Data
Cruncher continued to produce science-grade stellar-PSF-subtracted data and the summit bot provided
updates on the weather conditions as requested.
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flashing star icons to ensure that the correct star is observed, and
compares how much field rotation is achieved observing it
immediately versus the maximum achievable field rotation in
a 1-h observing sequence. Additionally, any target can be plot-
ted on the “Nightly Planning Tool” page, which plots the eleva-
tion, cumulative field rotation, and instantaneous field rotation
over time to determine the feasibility of observing the target at
any given time. An offline target list also exists in case the Web
Thingie is ever inaccessible.

Lastly, the Web Thingie hosts three quicklook stellar PSF
subtraction monitors to allow observers to search for candidates
and assess stellar-PSF-subtracted data quality in real time as
discussed in Sec. 2.3.

2.5 Collaborative Tools

To streamline collaboration across an international team, a series
of tools are used. To improve their utility, we have integrated
some of these tools with the automated infrastructure.

2.5.1 Wiki

An internal wiki run on the Dokuwiki platform is used for
documentation. The wiki is used as a knowledge-base for
information, such as troubleshooting the instrument. For data
analysis, a target page is automatically generated for each
target, with an observing summary of that target automatically
generated by the Data Cruncher. Users can then post additional
data analysis numbers, such as astrometry and photometry of
candidates, as well as summaries of the current state of data
analysis.

2.5.2 Slack

The messaging application Slack is used to communicate
efficiently between collaborators located all across the world.
The “#gpies-observing” channel allows for focused
discussion during the current observing run. Slack also has a
programmatic API, allowing for the development of software
integrations. As shown in Fig. 3, The Data Cruncher has a chat-
bot interface (source code available at https://github.com/
semaphoreP/datacruncher_slackbot), which posts pyKLIP
reductions as it finishes them to #gpies-observing.
When messaged, it also can retrieve images of previous
pyKLIP reductions on GPIES targets, tell the time in any
time zone, provide sunrise and sunset times for Gemini
South, and display the current moon phase using an emoji.
For telescope and observing information, a “summit bot,”
also shown in Fig. 3, was forked from the Data Cruncher chatbot
to run on the Gemini South summit computers and thus can
access the state of the telescope, weather monitors, and cloud
cameras, which have proved extremely useful for remote
observing when no one from the GPIES team is on the summit.
Together, the two chatbots assist in taking observations and ana-
lyzing data, reducing the manpower needs for executing the sur-
vey. They also allow GPIES members outside of the observing
team to easily stay updated on observing status: within half
an hour after an observing sequence on a target is complete,
GPIES members can look at the fully reduced data the Data
Cruncher chatbot posted onto Slack, without anyone in GPIES
having to do any data processing.

3 Utility of the Data Infrastructure
A fully automated data architecture from start to finish brings
several benefits to GPIES regarding observing efficiency,
data processing, data archiving, instrumental performance, and
survey statistics.

3.1 Tools for Observers

Awhole suite of tools has been developed to inform observers in
real time, reducing the complexity of decisions that need to be
made during the night. Before and during the night, the summit
bot on Slack can be messaged to display environmental moni-
tors and webcams from the summit. This allows the observers to
look at the current time series of data from seeing monitors as
well as look at in which directions in the sky there might be
clouds. Since all of this data appear on the #gpies-observ-
ing Slack channel, members of GPIES outside the core observ-
ing team can chime in, providing advice and improving the
cohesion of the team. Once conditions are good for observing,
the automated target selection tool on the Web Thingie allows
for flexible scheduling of targets, giving observers the highest
priority target at any given time, after accounting for pointing
restrictions. Once a target is picked, and data are being acquired,
the GPI DRP on the summit generates quicklook datacubes to
check for star alignment and image quality. Obviously bad data,
such as when the AO control loops open, can be marked as bad
in the GPI DRP and the bad-file flags will be propagated into the
database. Quicklook single-frame contrasts for the new data can
be compared with the histogram of all single-frame contrast of
similar targets. This allows observers to understand in what per-
centile the current observing conditions are, since single-frame
contrasts are the best predictors of final stellar-PSF-subtracted
contrast for a whole dataset.14

As we accumulate frames on a target, the quicklook stellar
PSF subtraction pages on the Web Thingie update in real time.
This is particularly useful when following up known systems or
candidate planets. Because of different observing conditions
affecting AO performance and stellar PSF stability, the exposure
times to achieve a desired SNR for confirmation or characteri-
zation of astrophysical sources will vary. The quicklook
reductions, even though they do not achieve the best stellar
PSF subtraction, give us an excellent measure. If a candidate
companion does not show up in the quicklook tools after a stan-
dard 1-h follow-up sequence, observers can decide to add an
extra hour to the follow-up observations. Contrarily, if condi-
tions are excellent and the quicklooks already detect the source
at high SNR, then observers can choose to cut a long sequence
short, and move on to other targets.

After a sequence is complete, observers can use the Web
Thingie to change the target status flag, flagging it as complete,
incomplete, or requiring follow up of candidates. Typically,
10 min after a sequence is complete and with no human inter-
vention, the Data Cruncher Slack bot posts the final pyKLIP
stellar-PSF-subtracted data onto #gpies-observing,
allowing for convenient viewing of the previous dataset and dis-
cussion of possible candidates in the data.

3.2 Data Processing Speed and Consistency

To make inferences from a large survey, it is important that the
data are processed uniformly with the latest calibrations and bug
fixes. With such a large amount of data over several years, an
automated architecture to handle all of the various data types and
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data processing needs can mitigate errors and reduce the work-
load, particularly for junior members of the GPI collaboration
who often are the ones reducing the data.

Using the data parser functionality of the GPI DRP, the Data
Cruncher is able to identify and process all calibration files taken
before or during an observing run. Without the need to trigger
human intervention to process these data, we always have the
latest calibration files processed before each run and available
on Dropbox. This also means that there is no need to reprocess
the data again immediately after the run. The real-time reduc-
tions generated by the Data Cruncher are of science-grade
and are used in papers.

Because of this, we have an extremely quick turnaround
when we do detect interesting objects. For example, when
GPIES discovered HR 2562 B,15 we could watch in real time
using the quicklooks on the Web Thingie as the companion
appeared in our data over the course of an hour. Preliminary
analysis of the companion indicated a peaky H-band spectrum
indicative of a bound, L-type companion rather a background
star, which likely has a monotonically smooth spectrum. We
had confidence in our preliminary analysis since the wavelength
calibration and spectral datacubes produced by the Data
Cruncher were of science grade. We knew we wanted to follow
it up immediately to characterize the spectrum at other wave-
length bands, and we did so at the next possible opportunity
during the same observing run. Similar situations have hap-
pened with background objects, for which spectra and astrom-
etry were extracted within hours of observation and candidates
were identified as background objects within the same night by
comparing with archival data. The fast turnaround time on our
data processing means we can quickly identify and prioritize
the most interesting objects found by GPIES. This becomes
important when planets are rare and weather conditions are bad.

When upgrades or bug fixes to the various pipelines occur,
the Super Data Cruncher is able to reprocess the entire campaign
on a supercomputer within a single day. This way, we can main-
tain a homogeneous reduction process for all data, and obser-
vations collected at different times are not subject to varying
systematic errors associated with changes in the reduction proc-
ess. Eliminating these systematic bugs in a uniform manner is
necessary when performing statistical analysis on the campaign.

3.3 Large Scale Data Analysis

A large dataset that is uniformly processed enables a wide range
of analyses that allow us to better understand planets, our algo-
rithms, and GPI itself. A critical final goal of the survey is to
place limits on the occurrence of giant planets at solar system
scales by comparing the number of planets imaged to the sen-
sitivity to planets based off contrast curves generated by the
Data Cruncher. Because the contrast curves are also stored in
the database, both single frame and final stellar-PSF-subtracted
contrasts can be correlated with target and atmospheric key-
words stored in the data headers. This allows us to understand
instrument performance by linking metrics generated by the AO
system to metrics expressing planet sensitivity generated by the
Data Cruncher.3,14 For example in Ref. 14, we were able to con-
struct the histogram of GPI performance for stars of different
brightnesses as well as show GPI’s AO correction is dependent
on the speed of atmospheric turbulence rather than just seeing.
As another example, the measurements of the apparent stellar
polarization obtained throughout GPIES can be used to improve

the characterization of the instrumental polarization over pre-
vious methods.16

The Data Cruncher cannot satisfy every data analysis need,
since there are always additional analyses to be done. While
rarely are datacubes regenerated, manual stellar-PSF-subtrac-
tions are done for scientifically interesting objects to optimize
the reduction for that object. Additionally, as new planet detec-
tion algorithms are developed, such as the forward model
matched filter (FMMF),17 they are run using the uniformly proc-
essed datacubes made by the Data Cruncher to characterize
algorithm performance. Although the Data Cruncher is not
the solution to all data reduction needs, it offers a solid infra-
structure for others to run analysis on.

Also, because all data from GPIES are processed uniformly
and available on Dropbox in an organized fashion, publicly re-
leasing GPIES data after the campaign will be straightforward
as sharing the link to the Dropbox folder containing the most
up-to-date reductions from the Data Cruncher.

Most importantly, all of this data analysis is possible without
a large effort by many members of GPIES reducing the data by
hand. A standard 1-h GPIES observing sequence takes 1 h to
manually generate all of the reduced data products. If follow-
up observations are included, ∼430 datasets have been
observed, so assuming an 8-h workday, it would have required
∼54 days worth of work to manually reduce all of the data taken
so far once. Reprocessing the campaign would be incredibly
time consuming since each reprocessing would take just as
many work hours. Instead, the processing and reprocessing
of GPIES data are accomplished with minimal time investment
by humans. This has allowed GPIES members to focus on
higher level analysis and writing papers rather than processing
data.

4 Future Steps
The successful design and implementation of the automated data
architecture have been one of the major accomplishments of the
GPIES collaboration. A few additional features remain desir-
able. Our top priority is to transition from planet detections
by eye to the FMMF algorithm, which can automatically flag
candidate companions with low false positive rates.17

Automated application of FMMF has not been implemented,
partially due to the substantial computation cost of the current
version of the algorithm. Simpler planet detection algorithms
have been implemented and tested in the Data Cruncher and
TLOCI pipeline, but these create more work than they save
because they flag too many false positives. After an automated
planet detection algorithm is implemented into the Data
Cruncher, automated astrometry and spectrophotometry of can-
didates will follow. However, given the rate of planet candidate
detections (a few per observing run), it has not been an efficient
use of time to implement all of these features.

A natural application of the GPIES architecture would be to
other direct imaging surveys, past, present, and future. Given
the similar data products and data processing needs, it would
be relatively straightforward to adapt many of our tools for
these surveys. Using such an infrastructure to uniformly process
all the data would ensure archival data is processed with the
latest stellar PSF subtraction algorithms and contrast curves
are removed of biases between DRPs when combining results
from multiple surveys.

Although GPIES has very specific data processing and tech-
nical needs, some of the infrastructure from GPIES could be
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broadly applicable to other surveys of similar scales, where the
data volume is large enough that doing everything by hand is
impractical, but small enough that it lacks a dedicated team
of professionals to manage all of the data. Pieces of the infra-
structure or general principles could be applicable to other
surveys. Much of the architecture described here can credit
its success to the integration and design of the entire system.
Features such as linking all reduced data products to raw
data products to instrumental and weather condition keywords
in a database can be useful for other surveys, but perhaps in
different forms (e.g., there might be several intermediate data
products that need to be tracked). Another area to emphasize
is the real-time processing and observing tools that reduce
the complexity of observing and streamline optimization of
observing strategy. Aggregating observing statistics and provid-
ing real-time observing conditions in convenient ways, such as
a website or Slack, can benefit other surveys too.

In the mean time, the GPIES team will enjoy the automation
of the data processing for the rest of the survey. The lack of
updates to the Data Cruncher recently (∼2 commits a month
on average to our Git repository in 2017) is evidence that the
infrastructure is running smoothly, and that the team is reaping
the benefits of the work put into the automation.

Appendix A: Data Reduction for GPIES

A.1 Calibration Data
All processing of calibration files uses the data parser module of
the open source and publicly available GPI DRP.18,19 The data
parser can be used through its GUI interface or programmati-
cally in IDL using the parse_fileset_to_recipes()
function that is associated with the parsercore object.
Either way, the data parser is automatically able to identify
and create data reduction steps for all of our calibration data.

In addition to the standard observatory calibration sequence
of dark frames that are taken at a variety of exposure times,
GPIES takes 80 dark frames, each 60 s long at the end of
each night, as most of the campaign uses 60-s exposure
times. Each sequence of darks of the same exposure time is
combined to produce one dark frame.20

Wavelength calibration frames, or “wavecals,” are taken at
two times: during the day and right before each science
sequence. During the day, deep sequences are taken with
both the argon and xenon arc lamps at each band as part of
the standard observatory calibration sequence. These are proc-
essed to be “master wavecals” since they are of high SNR and
allow for the wavelength solution of each microspectra to be
computed individually. Before each science sequence, GPIES
takes a 30-s argon arc lamp observation at the band the science
data is to be observed in (except in K-band, where an H-band
arc lamp frame is taken). This frame is processed using the
“quick wavelength solution” recipe template, which measures
shifts in the microspectra due to instrument flexure using
a master wavecal and computing the global offset in both
X and Y necessary to shift the master wavecal to align with
the microspectra of the argon arc lamp. This frame is used
only to correct for flexure, and relies on the master wavecal
for the rest of the wavelength solution. The accuracy of the
GPI wavelength solution is <2 nm in each band.21

For polarimetry data, we need calibration files that specify
the locations and the shapes (fit as 2-D Gaussians) of the polari-
zation spot pairs for each lenslet. Each spot in the pair corre-
sponds to the intensity in a given polarization channel of
a spatial pixel in a polarimetry datacube. The calibration files
provide the required mapping between each spot on the detector
and its location within the final datacube (where the third dimen-
sion represents the polarization state). Calibration files are gen-
erated in each band for the polarimetry spot calibration using
the flat-field lamp of the Gemini calibration unit, GCAL, and
processed using the GPI DRP data parser.

A.2 Spectral Mode
The majority of data from GPIES comes in the form of IFS data,
where the raw data consist of ∼35;000 microspectra spread
across the detector.

A.2.1 Constructing spectral datacubes

To extract the microspectra into a more useful data product, we
use the GPI DRP to construct spectral datacubes. The datacubes
are constructed and calibrated using the steps listed in Table 1,
which are slightly different from those of the default recipes
offered as part of the GPI DRP. Each step corresponds to
a primitive, one specific reduction task that can be run in the
GPI DRP.

While most of the primitives are straightforward, there are a
few points to clarify. The wavelength calibration that is loaded in
is typically the argon arc snapshot taken right before each
science sequence described in Sec. A.1. In K-band, the master
wavecal is loaded in since H-band arc snapshots are taken
instead. To then correct for instrument flexure, we use the
“bandshift”method of the “update spot shifts for flexure” primi-
tive. For sequences not in K-band, this corrects only for shifts of
the microspectra due to flexure caused by changes in the eleva-
tion of the telescope between the snapshot arc and the current
science frame. For a K-band sequence, this feature also corrects
for the shift between the current data and the master K-band
wavecal that is loaded in by measuring the offset between
the H-band master wavecal and the H-band arc snapshot
that was taken before the sequence. This requires the H- and
K-band master wavecals to be taken together without the tele-
scope having been moved in between so that they experience
the same flexure.

Due to a few large clusters of bad pixels on the detector, we
are not able to interpolate over all bad pixels in the 2-D frame.
Some bad pixels are propagated to the datacube, where we can
use neighboring spatial pixels in the datacube, which are far
apart in the 2-D frame, to fix the remaining bad pixels.

The satellite spots, four fiducial spots created by diffraction
of starlight off of a grid and centered on the location of the
star,24,25 are used for locating the occulted star and calibrating
the data photometrically. The GPI DRP measures the position
and flux of each satellite spot, and stores them to the header
of the datacube. The mean of the positions of the four spots
in each wavelength channel is also written into the header as
the location of the star at each wavelength. It is up to the various
postprocessing pipelines whether to use these numbers or to
recalculate them. In particular, it is important to measure the
flux of the satellite spots and astrophysical sources in the
same way to mitigate biases, so often the satellite spot fluxes
are recomputed. However, the values stored here are used to
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calibrate the single-frame contrast curves, so they are important
to log.

A.2.2 Stellar PSF subtraction

Taking all of the datacubes obtained in a sequence on a given
target, we use ADI and SDI to distinguish the light of the star
from the light of other astrophysical sources, so that we can
model and subtract out the stellar PSF. To avoid dependence
on a single stellar PSF subtraction algorithm, we use both
the classical ADI algorithm (cADI)8 and pyKLIP,26 an open-
source Python implementation of Karhunen–Loève image pro-
jection (KLIP),27,28 to provide two separate subtractions of the
stellar PSF. The cADI pipeline is quick so it is used for real-time
reductions, while the pyKLIP pipeline is used for our final
sensitivity analysis.

Using cADI, we perform two subtractions. The first is a basic
ADI reduction where the images are collapsed into broadband
images using the mean, highpass filtered using a Fourier filter
with a smooth cutoff frequency of four spatial cycles, subtracted
with the mean of the broadband image sequence, rotated north-
up, and collapsed in time to form one 2-D stellar-PSF-subtracted
image. The second reduction is similar to the first except before
collapsing into broadband images, it includes an SDI prepro-
cessing step where in each spectral cube, each frame is sub-
tracted by the median of all frames in the same spectral cube.
The latter subtraction is better suited for planets with sharp
molecular absorption features in the spectrum, while the former
works better for all other cases.

Using pyKLIP, we perform three reductions to search for
astrophysical signals: one general reduction, one optimized
for T-dwarfs with strong molecular absorption features, and
one optimized for circumstellar disks. In the first general-
purpose reduction, we first high-pass filter the images using
an 11-pixel full-width half-maximum (FWHM) Gaussian filter
in Fourier space to remove broad features caused by the seeing
and wind-shake while minimizing attenuation of high-frequency
point source signals of planets. Gaussians with smaller FWHMs
were found to subtract out too much point source signal. Then,
the images are duplicated once for each spectral channel to be
aligned to a common center and magnified using bicubic spline
interpolation so that the speckles are aligned at that wavelength
(i.e., so that the data at that wavelength do not need to be mag-
nified through interpolation). Then, we break the images into
nine annuli that increase logarithmically with separation and
break each annulus into four azimuthal sectors. For each
frame in a given sector, we build our KL modes using the 300
most correlated reference frames where a hypothetical planet at
the center of the sector would have moved at least one pixel due
to a combination of ADI field rotation and SDI rescaling of the
speckles. One pixel, which is about a third of the FWHM of the
planet PSF in H-band, was chosen empirically to maximize the
SNR of potential planets. Since the number of KL-modes to use
varies depending on the dataset, we save images that use 1, 10,
20, 30, and 50 KL-modes to reconstruct and subtract off the stel-
lar PSF. The images are all rotated to be north-up. We then save
six separate data products. Five are spectral datacubes, one for
each KL-mode cutoff, where we have collapsed all the data in
time. The last one is a KL-mode cube where we have collapsed
the images in both time and wavelength, leaving the third
dimension to be the number of KL-modes used to model the
stellar PSF. This cube allows for quick visual inspection of the
dataset to determine what the optimal number of KL-modes to
use is and to search for planets.

The second reduction optimized for T-dwarfs is similar to
the first except for two changes. First, the exclusion criterion of
one pixel is weighted so that reference images where the planet
is faint due to molecular absorption are preferred. This
means that even if the hypothetical planet did not move one
pixel due to ADI and SDI, as long as it is faint enough at
that wavelength compared to at the wavelength we are trying
to perform stellar PSF subtraction, the image will be included
in the reference library. Appendix A.1.3 of Ref. 17 explains
this in quantitative detail and illustrates this selection process
for a typical GPI dataset. Second, the KL-mode cube is col-
lapsed in wavelength using a weighted mean where the weights
are the fluxes for each spectral channel of a model T-dwarf
atmosphere.

Table 1 GPI DRP processing steps to make a spectral datacube.

Primitive name Purpose

Load wavelength
calibration

Reads in the appropriate wavelength
calibration file.

Subtract dark background Finds an appropriate dark frame and
subtracts it from the raw 2-D image.

Update spot shifts for
flexure

Corrects for shifts in the microspectra
due to instrument flexure.21

Interpolate bad pixels in 2-D
frame

Identifies and fixes bad pixels.20

Assemble spectral
datacube

Extracts the data into a 3-D cube
using a 3-pixel wide moving box.

Interpolate wavelength axis Interpolates the wavelength
dimension to be 37 equally spaced
channels.

Interpolate bad pixels in
cube

Fixes any remaining bad pixels using
spatially nearby pixels.

Correct distortion Corrects for optical distortion. The
datacubes are saved after this step,
and following steps only modify the
header information.

Measure satellite spot
locations

Automatically finds satellite spots
using a computer vision algorithm and
fits their locations with a
Gaussian.22,23

Filter datacube spatially Subtracts off a 15-pixel median filter
from the image to highpass filter the
image for the following steps. The
filtered image is not saved to disk.

Measure satellite spot peak
fluxes

Uses a Gaussian matched filter and
the location of the satellite spots in the
header to measure the flux of each
satellite spot.

Measure contrast Measures the single-frame contrast.
Then it saves the 1-D contrast curve to
an FITS file and contrasts at three
fiducial separations to the header of
the datacube.
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The third reduction is optimized for disks and again is similar
to the first reduction except for three changes: the images are not
highpass filtered to avoid removing disk structure, the images
use only ADI so only images at the same wavelength are
used to build the reference data, and more conservative KL-
mode cutoffs of 1, 3, 10, 20, and 50 are saved.

A.2.3 Contrast curves

After stellar PSF subtraction, we compute the sensitivity to plan-
ets in the dataset. For GPIES, we typically are sensitive to plan-
ets with L-type and T-type spectra. Due to the strong molecular
absorption of methane in T-type spectra, we have improved sen-
sitivity to T-type planets since we can use all the spectral chan-
nels where the planet is dim due to methane absorption to be
more aggressive in modeling and subtracting out the stellar
PSF without significant self subtraction of the planet itself
(see Sec. A.2.2). Thus, due to the differing sensitivities, we pro-
duce contrast curves for both L- and T-type planets.

For L- and T-type planets, we use the general reduction and
the T-type optimized reduction, respectively, to estimate the
level of the noise in the image. We then cross correlate each
reduction with a Gaussian function that has an FWHM of
3.5 pixels to smooth out high-frequency noise and maximize
the signal of potential planets, which have PSFs that are roughly
Gaussian.17 This cross-correlation map is then used to estimate
the noise level as a function of separation by computing the stan-
dard deviation of concentric annuli centered on the star. As we
have a limited number of independent noise realizations, we cor-
rect for small sample statistics assuming the noise distribution is
Gaussian29 and compute the planet brightness that corresponds
to the 5σ-equivalent false positive probability of 2.9 × 10−7, and
we take this to be our sensitivity limit (i.e., achieved contrast).
Thus, we produce a contrast curve for each planet spectral type
that is uncalibrated for flux biases introduced by the data reduc-
tion steps described in this section and the previous section.

For each type of planetary spectrum, we then perform two
more stellar PSF subtractions using the same parameters as
those used in Section A.2.2, but after injecting simulated planet
signals. Simulated planets of that particular spectrum are
injected as 2-D Gaussian signals and are used to quantify
flux biases due to stellar PSF subtraction. For these simulated
planet reductions, we inject planets at nine separations corre-
sponding to the center of each of the nine annuli and at four
different position angles so that the simulated planets spiral out-
ward to avoid significantly influencing each other when using
SDI. The second simulated planet reduction has the spiral arms
offset by 45 deg with respect to the first. We use the same
Gaussian cross-correlation routine that was used to estimate
the noise level to measure the flux of each simulated planet
after stellar PSF subtraction and calibrate flux measurement
biases induced by our data reduction process. Then for each
point in the contrast curve, we correct for these flux measure-
ment biases. For the contrast within 40 pixels (566 mas), the
calibration term is calculated as the linear interpolation between
the two closest measured flux calibration factors. Outside of
40 pixels, the correction factor applied is the average correction
factor for all simulated planets with separations greater than
40 pixels, as we determined empirically that the calibration
factor is constant in this regime to measurement uncertainty
(∼20%). This results in one T-type contrast curve and one
L-type contrast curve for each dataset.

A.3 Polarimetry Mode

A.3.1 Constructing polarimetry datacubes

Instead of a 37-channel spectral datacube, we use the GPI DRP
to generate datacubes where the third axis contains the two
orthogonal polarizations of light. These polarimetry datacubes
are an intermediate product that we then use for stellar PSF
subtraction. The steps performed by the GPI DRP to generate
polarimetry datacubes are listed in Table 2.

A.3.2 Stellar PSF subtraction

For polarimetry data, we subtract the diffracted light of the host
star using two methods: polarimetric differential imaging (PDI)
to look for polarized scattered light from circumstellar dust
around an unpolarized star and ADI to look for all scattered
light from circumstellar material.

To perform PDI, we use the GPI DRP to execute the steps
listed in Table 3. This outputs 3-D Stokes cubes where the third
dimension contains the four components of the Stokes vectors.
We also generate radial Stokes cubes by transforming the Stokes
vectors into a radial Stokes basis.33 Since light from most debris
disks is scattered only once, and thus has a tangential polariza-
tion, the radial Stokes basis typically has all of the polarized

Table 2 GPI DRP processing steps for polarimetry datacubes.

Primitive name Purpose

Load polarimetry spot
calibration

Loads in the appropriate calibration
file with the positions of the
polarization spot pairs.

Subtract dark background Finds an appropriate dark frame and
subtracts it from the raw 2-D image.

Flexure 2-D X correlation
with Polcal

Corrects for instrument flexure by
cross correlating the spot calibration
with the data and finding the optimal
global offset in X and Y .

Destripe science image Models and removes vibration-
induced microphonics.20

Interpolate bad pixels in 2-D
frame

Identifies and fixes bad pixels.20

Assemble polarization cube Constructs a 3-D datacube where the
third dimension is the two orthogonal
polarizations of light.

Interpolate bad pixels in
cube

Fixes any remaining bad pixels using
spatially nearby pixels.

Correct distortion Corrects for optical distortion.30

Measure star position for
polarimetry

Locates the position of the star using a
Radon-transform-based algorithm.23

Measure satellite spot flux
in polarimetry

Measures the flux of each satellite
spot using aperture photometry. The
aperture is elongated radially to match
the shape of the satellite spots.31

Measure contrast in Pol
mode

Measures the contrast achieved in
total intensity in a single frame of
observation.32
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astrophysical signals in one Stokes parameter. For PDI, to
account for instrumental polarization, we measure and subtract
out the apparent stellar polarization by measuring the polarized
signal behind the focal plane mask. One advantage of this tech-
nique is that it is robust against apparent stellar polarization due
to interstellar polarization, unresolved disk structure, or other
potential astrophysical polarization sources. Polarization from
these sources would also affect the stellar speckles and needs
to be subtracted out since we are interested only in the resolved
polarized component in GPI’s field of view.

To look for an unpolarized astrophysical signal next to the
star in our polarimetry data, we sum the two orthogonal polar-
izations in each polarimetry cube and treat each cube as a single
broadband image. Then, pyKLIP uses ADI to model and sub-
tract out the stellar PSF using two different sets of reduction
parameters. The images are not highpass filtered before stellar
PSF subtraction to preserve extended disk emission. The first
reduction, the conservative one, divides the image into seven
annuli, uses images where potential astrophysical sources
have moved by at least three pixels due to ADI to be used to

model the stellar PSF, and reconstructs the stellar PSF using
1, 3, 5, 10, 20, and 50 KL modes. The second reduction, the
aggressive one, divides the image into nine annuli, uses images
where potential astrophysical sources have moved by at least
1 pixel, and reconstructs the stellar PSF using 1, 2, 3, 4, 5,
10, 20, and 50 KL modes. We found that these two sets of
parameters provide a conservative and aggressive reduction
for studying circumstellar materials. The conservative reduction
tries to mitigate stellar PSF subtraction biases on circumstellar
material to preserve the diffuse emission and disk morphology.
The aggressive reduction allows one to search for faint structure
close in to the star.

Appendix B: Data Cruncher Software
Implementation
Here, we will discuss how we implemented the Data Cruncher
framework in software. In general, thread synchronization,
network communication, and file system interrupts are key
techniques for this implementation.

B.1 Processing Backend
The processing backend manages the data flow through the
three DRPs discussed in Appendix A (GPI DRP, pyKLIP,
and cADI). The processing backend is broken up into Python
threads that each manage one task and are depicted as the
boxes inside the processing backend box in Fig. 2. The threads
communicate with each other by passing messages through
queues and use monitors [implemented using the Lock()
and Condition() objects available in Python’s threading
library] as the synchronization construct to block threads that are
waiting for newmessages to be passed into the queue. For exam-
ple, after one pipeline finishes processing some intermediate
data products, it can send a message about these data products
to another thread via their communication queue, alerting this
second thread, which was previously sleeping since it had
nothing to do, of the new data to process. The processing back-
end has four different kinds of threads: a network interface
thread, the GPI DRP thread, stellar PSF subtraction threads,
and the GPIFileProcessor, the backbone that manages
the data flow.

The network interface thread receives commands from
instructor processes. Instructors pass messages that contain
the file or files to be processed, the output directory, whether
the input data are raw 2-D images or 3-D datacubes, what
kind of data it is (i.e., spectral, polarimetry, or calibration
data), and optional parameters such as which stellar PSF sub-
traction algorithms to use. There are three network interface
threads available: web socket, message passing interface
(MPI), or a regular queue. These threads are mutually exclusive
so only one thread ever runs. The web socket thread is used in
most contexts, except when run on a supercomputer. The net-
work interface’s main purpose is to parse the received messages
and send the messages to the GPIFileProcessor.

The GPIFileProcessor thread manages all of the vari-
ous pipeline threads. The GPIFileProcessor receives mes-
sages from the network interface and parses the instructions into
work units that need to be passed into the various pipelines.
It then checks against the database to ensure that the files are
not marked as bad, discarding instructions for bad data as it

Table 3 GPI DRP processing steps for PDI.

Primitive name Purpose

Accumulate images Gathers together all the images in
memory and demarcates that the
following primitives will be run on
a series of images, rather than on
each image individually.

Clean polarization pairs via
double difference

Removes polarized and unpolarized
speckles in the images using data
taken with different half-wave plate
orientations.7

Smooth a 3-D cube Convolves each polarization image
with a Gaussian with a FWHM of
1 pixel to suppress pixel-to-pixel noise
and improve the noise properties in
the final Stokes Cube without
sacrificing significant spatial
information.

Subtract mean stellar
polarization from podc

Uses an annulus inside the occulting
mask between 7 and 13 pixels from
the star to measure the stellar
polarization and subtract it off.32

The results are saved and can be
referenced at a later time.

Rotate north up Rotates each image so that north is up
and east is left.

Combine polarization
sequence

Takes the entire sequence and
makes a single 3-D datacube where
the third dimension is the four Stokes
parameters. This Stokes cube is
then saved to disk.

Convert stokes cube to
radial

Transforms the Stokes cube into
a radial Stokes basis, which is also
saved to disk.

Get statistics on polarimetry
vectors

Generates a histogram of polarization
directions across the entire field of
view and saves the polarimetry
quicklook display.
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goes along. All good, raw, 2-D data are sent to the GPI DRP for
data processing.

Because the GPI DRP was not designed to be fully
automated to this degree and does not fully expose all of its
features programmatically, a few workarounds were required.
The GPI DRP uses a recipe directory, where each job is an
XML file detailing the data reduction steps that need to be
executed on some data. These recipe files exist in three states:
waiting to be executed, in the processes of being executed,
and finished being executed (either successful or failed).
The GPIFileProcessor writes XML recipe files into the
queue directory, which queues a job for the GPI DRP. The
recipes for science data are custom recipes specified in
Appendix A. For calibration files, an instance of the GPI
DRP data parser is created, and the data parser generates the
appropriate recipes to be written into the queue.

Once a recipe file is written into the queue, we need to iden-
tify when the GPI DRP finished that recipe so we can then run
the appropriate postprocessing algorithms. The GPI DRP
thread’s sole purpose is to track this. When the GPI DRP fin-
ishes processing a recipe, it updates the recipe file to indicate
whether the recipe succeeded or failed. Thus, the GPI DRP
thread uses the Python watchdog package to receive file
system interrupts. When a recipe file has been updated, the
GPI DRP thread is awakened to run a function that notifies
the GPIFileProcessor that data have been processed.

Except in the case of quicklook reductions, the
GPIFileProcessor waits on the condition that all raw
data are finished being processed by the GPI DRP, regardless
of whether all files were successfully processed, before running
stellar PSF subtraction. When it is notified by the GPI DRP
thread that all queued raw files have been processed, then it
passes jobs to the stellar PSF subtraction threads. Generally,
there are two stellar PSF subtraction threads that run in parallel:
one for pyKLIP and one for cADI. Both threads run their
respective pipelines as subprocesses rather than subthreads to
avoid the Python global interpreter lock and to improve memory
efficiency by relying on the operating system to free memory
rather than the Python garbage collector. As cADI does not
require many computational resources, it is practical to run
the two threads in parallel. The cADI thread runs two reductions
as discussed in Appendix A.2.2. The pyKLIP thread receives
eight jobs for each spectral mode dataset: three different stellar
PSF subtractions optimized for different science objectives as
discussed in Appendix A.2.2, four reductions to inject and re-
cover fake planets to calibrate out flux biases induced by the
data processing, and one calculation of the contrast curve as
detailed in Appendix A.2.3. These work units are broken up
and prioritized so that if multiple datasets have stellar PSF sub-
tractions queued up, a single KLIP reduction for each dataset is
prioritized first, allowing for a fast initial look in real time during
an observing night. For polarimetry mode data, two pyKLIP
reductions (as discussed in Appendix A.3.2) are queued up
to look for total intensity disk signal. PDI reductions are also
queued into the GPI DRP queue to subtract the unpolarized
stellar signal to look for polarized astrophysical emission.

For quicklook reductions, only cADI is used for spectral
mode data and the GPI DRP still performs the quicklook
PDI reductions. Quicklook reductions are specified with
a flag in the instructions received by the network interface.
Upon seeing this flag, the GPIFileProcessor does not
wait for all raw files to be finished by the GPI DRP. Rather,

the goal is to have the quicklook reduction done as fast as pos-
sible in real time with however many files have already been
processed. Because of this, when multiple files are downloaded
by the Data Cruncher at once due to latency in the file syncing,
duplicate quicklook stellar PSF subtraction jobs are created. To
avoid having the same instruction multiple times in the stellar
PSF subtraction queue to improve efficiency, the queue through
which jobs are passed to the stellar PSF subtraction threads
disallows duplicates.

B.2 Instructors
Currently, we use three different instructor interfaces that send
commands to the processing backends. Multiple instructors can
talk to the same processing backend, and to practically handle
this, we do not leave web sockets open, closing them immedi-
ately after sending instructions so that another instructor is able
to connect without timing out. Often times, the instructor and the
processing backend live on the same machine as the instructors
do not consume much computing resources.

The realtime scanner module handles all of the real-time
processing. It uses the Python watchdog module to receive
alerts from the operating system when new data are synced
to the computer and written to disk. Upon being alerted of a
new file, the realtime scanner decides how to process the file
depending on the context in which the file is taken. To keep
track of the state of observing, the logic inside of the realtime
scanner is implemented as a finite state machine. The finite state
machine logic handles almost all standard observing procedures
for spectral, polarimetry, and calibration data taken as part of
GPIES. The only exceptions are thermal background frames
taken in K band.

The reprocessor instructor is a series of Python functions that
can be called on demand to perform individual tasks such as
reprocessing a single dataset on a target or processing a list
of raw files. Each function uses the mysql Python library to
query the database for the desired files requested by the user
and sends commands to the processing backend to process
the files appropriately. The reprocessor can also query for all
data from the campaign, generate instructions to reprocess all
of the raw data from scratch, and save the commands to text
files to be uploaded onto a supercomputing cluster that does
not have direct database access.

The third instructor is the controlling node for the Super Data
Cruncher, which is what the Data Cruncher is called when it
runs on a supercomputer. Each node on the supercomputer
runs one instance of the processing backend. The previous
two instructors use web sockets to communicate to the process-
ing backend, but in supercomputer clusters, MPI is the network
interface of choice. The exception is the controlling node itself,
which uses a simple queue interface to pass instructions to its
own processing backend, avoiding the overhead of MPI. The
controlling node reads instructions that have been pregenerated
in a text file to avoid setting up a connection to the database from
the supercomputing center. It then distributes the instructions
across all of the nodes with a granularity level of a full sequence
on a single target.

Practically, the reprocessing of the entire campaign is done in
two phases: once for the raw 2-D data to make datacubes, and
once to run stellar PSF subtraction on the datacubes. As process-
ing the raw data requires running the GPI DRP, and thus requir-
ing IDL licenses for each node, we typically only use ∼20 nodes
to do this step. Afterward, a script is run to quality check the
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reductions, ensuring that calibration issues like flexure offsets
are handled properly. Then, the Super Data Cruncher runs stellar
PSF subtraction and contrast curve generation for all datasets.
Due to IDL licensing issues, only a small subset of nodes is
designated to run all of the cADI reductions, but since the
cADI reductions are fast to compute, this does not slow
down the reprocessing. pyKLIP stellar PSF subtraction and
contrast curve generation are evenly distributed across all of
the nodes.
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