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Abstract. The generation of Extremely Large Telescopes (ELTs) with mirror diameters up to 40 m has thick
secondary mirror support structures (also known as spider legs), which cause difficulties in the wavefront
reconstruction process. These spider legs create areas where the information of the phase is disconnected
on the wavefront sensor detector, leading to pupil fragmentation and a loss of data on selected subapertures.
The effects on wavefront reconstruction are differential pistons between segmented areas, leading to poor wave-
front reconstruction. The resulting errors make the majority of existing control algorithms unfeasible for telescope
systems having spider legs incorporated. A solution, named the split approach, is presented, which suggests to
separate reconstruction of segment piston modes from the rest of the wavefront. Further, two methods are intro-
duced for the direct reconstruction of the segment pistons. Due to the separate handling of the piston offsets on
the segments, the split approach makes any of the existing phase reconstruction algorithms developed for non-
segmented pupils suitable for wavefront control in the presence of telescope spiders. We present end-to-end
simulation results showing accurate, stable, and extremely fast wavefront reconstruction for the first light instru-
ment mid-infrared ELT imager and spectograph of the ELT that is currently under construction. © The Authors.
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1 Introduction
The pupils on the Extremely Large Telescope (ELT)-generation
telescopes are inevitably segmented and partially shaded by
thick support structures due to their large sizes. Due to small
subapertures, these secondary mirror support structures, also
known as spider legs, lead to fragmentation of the pupil into
several disjoint segments and cover partially or even completely
up to several subapertures. If a wavefront sensor provides only
local information about the wavefront, as the Shack–Hartmann
(SH) does, differential pistons between the pupil fragments are
not seen by the sensor (are in the null space), and therefore, can-
not be controlled.1 The pyramid wavefront sensor (PWFS),2 due
to its increased sensitivity, has been chosen as part of many
instruments currently under the development for ELT-sized tele-
scopes. In contrast to the SH sensor, the pyramid sensor does
have a footprint of the segmented piston in its data (see
Sec. 5.2.2 and Fig. 5). This suggests that the reconstruction
of such modes is possible, if the reconstructor is able to extract
this information from the sensor data and efficiently use it.

This paper pursues twofold aims. First, various existing
reconstructors are analyzed and compared with respect to
their ability to provide a stable control of the fragmented piston
modes. This analysis exposes a serious lack of tools for the
mentioned task, which makes the majority of available
reconstruction algorithms helpless in the presence of telescope

spiders. Therefore, the second aim of this paper is to provide
such a tool.

Let us drop a few words on our framework. First of all, we
distinguish between the so-called low-wind effect (LWE) and
pupil fragmentation problem. The LWE is a real low-order dis-
tortion in the wavefront caused by the heating of the air in the
vicinity of spider legs in particular low-wind conditions as
observed on the Very Large Telescope.3 Pupil fragmentation
is, on the contrary, a reconstructor-related phenomenon induced
by discontinuity of sensor data. In this paper, we are not con-
sidering the LWE, but we focus on the differential pistons
related to reconstruction methods only. The latter is caused
by the inability of the reconstructor to provide an accurate sol-
ution of the wavefront based on fragmented data. Such a failure
may have two origins. One reason is the inability of the wave-
front sensor to provide the measurements of the jumps between
the wavefront parts on pupil fragments, as is in the case with the
SH sensor. Or it may as well be a deficiency in the reconstructor
itself, which is not able to use in a proper way this kind of infor-
mation that is though provided by the sensor. Moreover, in this
paper, we focus on solutions to the pupil fragmentation problem,
which do not require bringing any changes into the mechanical
setup of the system, i.e., introducing any additional dedicated
focal plane sensors that would measure the fragmented low-
order modes during the AO loop, as suggested for the LWE
in Refs. 4–7.

Let us consider the pupil fragmentation problem with
PWFSs. We demonstrate in this paper that even if this type of
sensor is able to provide the information on the jumps between
the fragmented wavefronts, its usage does not automatically lead
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to correct reconstructions of segmented pistons with an arbitrary
reconstruction algorithm designed for nonfragmented annular
apertures. Based on numerous end-to-end simulations per-
formed with various reconstruction algorithms (summarized
in Secs. 3.5 and 4.2), we draw a conclusion that many of the
known methods simply fail, meaning that the residuals contain
randomly appearing uncontrolled piston modes on the seg-
ments. This leads to a significantly reduced correction quality
in terms of Strehl ratio, PSF, and contrast. In addition to pupil
fragmentation, another challenge that wavefront reconstruction
algorithms for the ELTs have to tackle with is the high
number of correcting elements that need to be controlled in real
time.

Having these two points in mind, in Secs. 3 and 4, we give an
overview of the available algorithms and their readiness/ability
to operate both fast and stable with high-quality on ELTs. The
analysis is performed in the context of the mid-infrared ELT
imager and spectograph (METIS) instrument8 on the ELT con-
taining a single conjugate adaptive optics (SCAO) system with
74 × 74 WFS subapertures. The geometry of the planned ELT
M4 deformable mirror (DM) is taken into account. The thick-
ness of the six secondary mirror support structures is 50 cm and
coincides with the subaperture size.

On the one hand, as shown in Sec. 3.5, the current status of
the performed simulations shows that among all possible var-
iants of the interaction-matrix-based matrix–vector multiplica-
tion (MVM) methods only one, namely, the minimum variance
reconstructor using a zonal interaction matrix and Laplacian
regularization, is able to provide a stable control of the seg-
mented low-order modes. However, the well-known drawback
of any MVM method is the related computational load. Though
for the considered SCAO system, the real-time application of
MVM is still doable, it is hardly feasible in case of the planned
extreme adaptive optics (XAO) system having tens of thousands
of correcting elements to control.

On the other hand, as shown in Sec. 4, there exists a variety
of interaction-matrix-free, model-based wavefront reconstruc-
tors developed for PWFSs in the recent decade, all of them
being computationally much more efficient than interaction-
matrix-based approaches. However, since those methods were
developed such that they are intrinsically using the approximate
forward models of the sensor not including segmented pupils,
these methods fail when being applied straightforwardly to seg-
mented sensor data. In Sec. 4.2, we additionally mention several
attempts of adapting these methods for wavefront reconstruction
on segmented pupils that unfortunately do not yield the expected
performance. Therefore, in the presence of spiders, model-based
wavefront control algorithms need to be adapted in some sophis-
ticated way in order to handle the differential pistons between
the pupil segments.

As a solution allowing for both high-quality and high-speed
wavefront control, we suggest in Sec. 5 a hybrid scheme. This
approach combines the advantage of the interaction-matrix-
based methods of being able to handle pupil segmentation
and the advantage of the model-based reconstructors of
being fast. The solution, named the split approach, treats the
reconstruction of segmented pistons separately from the higher-
order modes (or frequencies). Here, the piston-free wavefront
reconstruction on segments is provided by some model-based
algorithm, e.g., the P-CuReD,9–11 as described in Sec. 5.1. In
parallel, the segment pistons are reconstructed from the same
sensor data with an interaction-matrix-based MVM approach.

Since for the direct segment piston reconstruction we are
only interested in the modes of order zero, the computational
load can be significantly reduced.

In Sec. 5.2, we demonstrate two possibilities toward the for-
mulation of the direct piston reconstruction for segmented
pupils. The first one employs the usual setting of the full
zonal interaction matrix using a set of dedicated basis functions
representing the wavefront. This big matrix is then inverted via
standard techniques of regularization and the resulting inter-
mediate control matrix is afterward reduced to a small sized,
control matrix relating the sensor data with the vector of seg-
ment pistons having only as many entries as pupil segments.
Though still requiring the computationally expensive setting
up and inversion of a dense matrix, which can be performed
offline, the online calculations have linear complexity OðnaÞ
and are very cheap. In the second approach for direct segment
piston reconstruction, the initial interaction matrix is formulated
in the basis of segment pistons and is, therefore, very small from
the start. Resulting in the same number of computations to be
performed online, this approach is, in addition, free from the
time-consuming (offline) operations involved in the first
approach. Sec. 5.4 contains technical details on the implemen-
tation of the split approach.

In combination with the P-CuReD, both direct segment pis-
ton reconstruction methods have an overall computational
effort, which scales linearly. In Sec. 6, we illustrate the perfor-
mance of the split approach employing the two proposed meth-
ods for direct piston reconstruction for segmented pupils with
end-to-end closed loop simulation results.

2 Preliminaries
Let us denote the model of the pyramid sensor by an operator
P∶L2ðR2Þ → R2n, which maps real-valued L2 functions (wave-
fronts and residual phases) to a vector of discrete measurements
of length 2n. The measurement process is given by

EQ-TARGET;temp:intralink-;e001;326;366~s ¼ PΦþ ~η; (1)

where Φ describes the incoming phase, ~s is the pyramid sensor
measurements, and ~η is the noise in the data. The inverse prob-
lem is to reconstruct the wavefront Φ from given noisy sensor
data ~s. Throughout this paper, we assume the pyramid sensor to
operate in closed loop AO to be linear.

For a detailed description of the advantages of the PWFS
over other sensor types and an overview on the instruments
and telescopes, in which this type of sensor is already installed
or is planned to be used in the nearest future, we refer the reader
to Ref. 12. Here, we only mention briefly that due to the global
response, the PWFS is able to sense the differential pistons,
which has been successfully demonstrated in the laboratory,13,14

supported by numerical simulations, and validated on sky under
seeing-limited conditions.15 The ability of the PWFS to sense
the differential pistons of a segmented mirror and correct for
it with an inversion based on the singular value decomposition
(SVD) of the measured interaction matrix was first demon-
strated in numerical simulations in Ref. 16. Among all WFS
types tested in Ref. 17, the PWFS takes the most sensitive mea-
surements of the differential pistons on the segments. Apart
from that, compared to the SH WFS, the PWFS provides an
increased sensitivity, which leads to higher limiting GS magni-
tudes and higher sky coverage.18

The reconstructors we will be dealing with in Secs. 3 and 4
are using different forward models of the PWFS or its
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approximations. Here, for the sake of brevity, we intentionally
omit describing the forward models of the PWFS since we focus
mainly on the achieved performance of various methods under
pupil segmentation. For a detailed description of different model
approaches and approximations of the WFS data we refer the
reader to the devoted works.9,10,12,19,20

Note that the interaction-matrix-based MVM methods are
described in Sec. 3 with a much higher level of detail compared
to the model-based algorithms in Sec. 4. This is done intention-
ally by the authors who contributed to the development of
model-based algorithms, which turned out to struggle under
the circumstances of pupil fragmentation. The focus of this
paper is to study, compare, and understand the behavior of dif-
ferent algorithms under pupil fragmentation. As a result of these
efforts, this paper serves partially as a review of the currently
available wavefront reconstruction algorithms for PWFSs
and, in particular, of the present status in the performance
those reach on the ELT-era instruments under design.

The connection between incoming wavefronts Φ, residual
wavefronts Φres, and the mirror shape φ in an AO system is
given by

EQ-TARGET;temp:intralink-;e002;63;521Φres ¼ Φþ φ: (2)

Since for ideal compensation the residual wavefront Φres

should be equal to zero, the optimal choice for the DM
shape is:

EQ-TARGET;temp:intralink-;e003;63;457φ ¼ −Φ: (3)

Therefore, for the control of DMs, one needs to know either
the mirror actuator commands or the shape of the incoming
wavefront provided as the solution of the inverse problem
(1) for Φ.

3 Interaction-Matrix-Based Reconstructors
In this section, we analyze the applicability and performance of
the so-called interaction-matrix-based MVMmethods for PWFS
data and fragmented pupils. These methods involve a registra-
tion (or computation) of a WF-to-WFS interaction matrix, its
inversion and a subsequent multiplication of the obtained con-
trol matrix with a vector of sensor data measurements. In the
literature, there have been many variants of the interaction-
matrix-based MVM approach presented: statistical estimation
or solution in a least-squares sense; zonal or modal control
approaches (i.e., the degrees of freedom are actuators/subaper-
tures or modes). The presented overview aims to summarize and
compare the performance of the existing interaction-matrix-
based MVM methods in case of PWFS data fragmented by spi-
ders. In Sec. 3.1, the generation of a WF-to-WFS interaction
matrix is described, and the option of coupling or decoupling
this step with the DM is explained in Sec. 3.2. In Sec. 3.3,
the simplest least-squares approach and its regularized inversion
are specified, whereas Sec. 3.4 deals with more sophisticated
statistical approaches. Finally, the quality and speed perfor-
mance of the interaction-matrix-based MVM algorithms are
summarized in Sec. 3.5.

3.1 Generating the Interaction Matrix

We introduce ðhiÞ as a set of arbitrary basis functions to re-
present the wavefront, ðhmi Þ as a set of modal/global basis func-
tions, and (IF) denotes the DM influence functions. In order to

create the interaction matrix of the system, we need to relate the
incoming wavefront with the output (measurements) of the
PWFS. We represent the incoming wavefront Φ using a set
of basis functions ðhiÞ. Thus Φ can be approximated by

EQ-TARGET;temp:intralink-;e004;326;708Φðx; yÞ ¼
Xnc
j¼1

cjhjðx; yÞ; (4)

where nc indicates the number of used basis functions. The
interaction matrix M ∈ R2n×nc is then given by

EQ-TARGET;temp:intralink-;e005;326;636M ¼ ð ~s1 ~s2 · · · ~snc Þ; (5)

i.e., the measurements

EQ-TARGET;temp:intralink-;e006;326;592~si ¼ PðhiÞ for i ¼ 1;2; : : : ; nc; (6)

corresponding to the basis function hi build the i’th column of
the interaction matrix.

The sensor equation, as already mentioned, reads as

EQ-TARGET;temp:intralink-;sec3.1;326;533~s ¼ PΦþ ~η:

To reconstruct the incoming (residual) wavefront Φ, the
matrix M has to be “inverted” and applied to the measurements
represented by

EQ-TARGET;temp:intralink-;sec3.1;326;468~c ¼ M†~s;

with ~c ¼ ðciÞi¼1;: : : ;nc .
After the reconstruction step, one has to derive the actuator

commands ~a ¼ ðaiÞi¼1;: : : ;na from the reconstruction Φ, i.e.,
solve

EQ-TARGET;temp:intralink-;e007;326;393Φðx; yÞ ¼
Xnc
j¼1

cjhjðx; yÞ ¼
Xna
j¼1

ajIFjðx; yÞ: (7)

If the chosen basis hi coincides with the DM influence
functions, the vectors ~c and ~a are equal.

3.2 Working with DM Influence Functions

Often, the interaction matrix inversion is coupled with the DM
in the sense that for the generation of an interaction matrix one
creates a certain (zonal or modal) shape with the DM, which is
then sensed by the wavefront sensor. In this approach, one is
restricted to wavefront shapes, which can be represented
by the DM, i.e., are a linear combination of the DM influence
functions:

EQ-TARGET;temp:intralink-;e008;326;213Φðx; yÞ ¼
Xna
i¼1

aiIFiðx; yÞ; (8)

or using DM modes

EQ-TARGET;temp:intralink-;e009;326;153Φðx; yÞ ¼
Xnc
j¼1

cjhmj ðx; yÞ; (9)

with

EQ-TARGET;temp:intralink-;sec3.2;326;97hmj ðx; yÞ ¼
Xna
l¼1

mj
l IFlðx; yÞ;
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with actuator commands ðmj
l Þ. This results in

EQ-TARGET;temp:intralink-;e010;63;741Φðx; yÞ ¼
Xnc
j¼1

cjhmj ðx; yÞ ¼
Xnc
j¼1

cj
Xna
l¼1

mj
l IFlðx; yÞ: (10)

Combining Eq. (1) with Eq. (8) or Eq. (9) produces a DM-to-
WFS interaction matrix, which relates the sensor measurements
~s directly with the command vectors:

EQ-TARGET;temp:intralink-;sec3.2;63;658

~s ¼ PΦþ ~η ¼ P

 Xna
i¼1

aiIFi

!
þ ~η ¼

Xna
i¼1

aiPðIFiÞ þ ~η

¼∶ MIF~aþ ~η;

or
EQ-TARGET;temp:intralink-;sec3.2;63;579

~s ¼ PΦþ ~η ¼ P

 Xnc
j¼1

cjhmj

!
þ ~η ¼

Xnc
j¼1

cjPðhmj Þ þ ~η

¼∶ Mm~cþ ~η;

assuming a linear response of the pyramid sensor. In our
approach, which is more general, the steps of wavefront
reconstruction and projection to the DM are decoupled. One
is not limited to using only the DM influence functions or
modes, which can be provided by those as basis.

3.3 Deterministic Setting

3.3.1 Least-squares pseudoinverse

The least-squares problem

EQ-TARGET;temp:intralink-;sec3.3.1;63;401~c ¼ arg min
~c
kM~c − ~sk22;

of finding the best wavefront fit ~cLS to the given WFS data
vector ~s is uniquely solved by the least-squares minimum
norm solution given as the Moore–Penrose generalized inverse

EQ-TARGET;temp:intralink-;sec3.3.1;63;331M† ¼ ðMTMÞ−1MT:

Such a pseudoinversion of the interaction matrix is
considered to be the simplest reconstruction algorithm possible.
Historically, least-squares with zonal representation was the
first approach applied to the wavefront reconstruction problem
involving the SH wavefront sensor.21 For wavefront
reconstruction using PWFS measurements, the least-squares
approach allows one to reach high correction accuracy without
regularization, at least if the number of degrees of freedom is not
very big. With the PWFS, the least-squares reconstructor has
provided reasonable results on small scale systems having up
to 30 × 30 subapertures within an 8-m telescope diameter as
it was demonstrated in Ref. 22 with modal DM control using
Karhunen–Loève (KL) polynomials.

3.3.2 Regularized least-squares pseudoinverse

For large-scale AO systems or more sophisticated configurations
like multiconjugate adaptive optics (MCAO), the corresponding
system matrices have large condition numbers and are difficult to
invert. In this case, the conventional least-squares reconstructor
performance is not satisfactory, and special treatment is required
in the form of a regularization or filtering of unstable modes.

Sensor noise is modeled as a random process obeying zero-
mean Gaussian statistics, η ∼N ð0; Cη ¼ σ2IÞ, Cη ∈ R2n×2n,
where σ2 denotes the sensor noise variance. The noise-covari-
ance-weighted least-squares (also known as minimum-norm
maximum likelihood23) reconstructor, which minimizes

EQ-TARGET;temp:intralink-;sec3.3.2;326;695~c ¼ arg min
~c
kM~c − ~sk2C−1

η
;

allows one to take the stochastic measurement uncertainties into
account. The solution is given by

EQ-TARGET;temp:intralink-;sec3.3.2;326;636M†
η ¼ ðMTC−1

η MÞ−1MTC−1
η :

The pseudoinverse can be computed using the eigendecom-
position of MTC−1

η M or the SVD of C−1∕2
η M. However, in prac-

tice, such decompositions are related with expensive
computations and difficulties in computing the small singular
values with the desired numerical precision. Also, small com-
putation errors in eigen- or singular values lead to instabilities
in the reconstruction due to noise amplification. As a regulari-
zation method, in the truncated SVD, one filters out the modes
corresponding to singular values smaller than a given param-
eter α > 0.

Alternatively, a similar effect is achieved by the so-called
Tikhonov regularization, well-known in the field of inverse
problems.24 For solving the inverse problem (1), we consider
the least-squares problem

EQ-TARGET;temp:intralink-;sec3.3.2;326;450

~c ¼ arg min
~c
fkM~c − ~sk22 þ αk~ck22g:

Then the regularized pseudoinverse is derived as

EQ-TARGET;temp:intralink-;e011;326;402M†
α ¼ ðMTM þ αIÞ−1MT; (11)

with Tikhonov regularization term consisting of a regularization
parameter α > 0 and identity matrix I.

For (relatively) small scale systems having up to 30 × 30
subapertures on an 8-m telescope, high correction quality has
been achieved with both an SVD-regularized zonal25 and
modal least-squares reconstructor using Zernike polynomials26

or KL polynomials.27–29

However, due to noise propagation, the least-squares wave-
front reconstruction algorithm performs poorly for large-scale or
laser-guide star-based AO applications.30,31 Hence, there has
been a tendency observed in the AO community to prefer the
regularized variants of the interaction-matrix-based MVM
method taking atmospheric statistics into account.

3.4 Bayesian Setting

Within a stochastic context, wavefront shapes and sensor noise
are independent random processes obeying zero-mean Gaussian
statistics, Φ ∼ Nð0; CΦÞ, η ∼ Nð0; Cη ¼ σ2IÞ, CΦ ∈ Rnc×nc , and
Cη ∈ R2n×2n, with σ2 denoting the sensor noise variance. Such
a point of view allows one to use in the reconstruction the prior
knowledge of the atmosphere and measurement noise statistics,
expressed with the corresponding covariance matrices Cϕ and
Cη, in order to regularize or stabilize the solution.

Two Bayesian statistical approaches, both using a prior
probability density assumed on the phase, have been applied
to the problem of wavefront reconstruction from sensor data—
minimum variance estimation and maximum a posterior (MAP)
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estimation. The minimum variance [or minimum mean-square
error (MMSE)] estimator minimizes the variance of the phase
estimation error. The MAP estimator identifies the most likely
value ofΦ given the observed data~s and prior knowledge on the
distribution of Φ. Since wavefront reconstruction deals with
zero-mean Gaussian signal and perturbation, the minimum vari-
ance reconstructor providing the minimal MSE coincides with
the MAP reconstructor.23,32

In the Bayesian setting, the measurement vector ~s is a func-
tion of the atmospheric turbulence profile. The sensor Eq. (1)
using the representation of the wavefront Eq. (4) formulated
in terms of arbitrary coefficients ci ∈ R, in the stochastic setting
is formulated in terms of wavefront coefficients ϕi ∈ R as
EQ-TARGET;temp:intralink-;sec3.4;63;609

~s ¼ PΦþ ~η ¼ P
Xnc
i¼1

ϕihi þ ~η ¼
Xnc
i

ϕiPhi þ ~η

¼
Xnc
i

ϕi~si þ ~η ¼ M ~Φþ ~η:

The aim in this setting is to compensate the turbulence-
induced wavefront error.

The minimum variance/MAP reconstructor minimizes the
penalized noise-weighted least-squares functional

EQ-TARGET;temp:intralink-;sec3.4;63;484

~Φ ¼ arg min
~Φ

n
kM ~Φ − ~sk2C−1

η
þ μ0k ~Φk2C−1

Φ

o
;

which can be viewed as an estimator regularized with a

Tikhonov term μ0k ~Φk2C−1
Φ
. The weighting parameter μ0 allows

one to balance between fitting to the data and the prior statistics.
The corresponding regularized normal equation is

EQ-TARGET;temp:intralink-;sec3.4;63;393ðMTC−1
η M þ μ0C−1

Φ Þ ~Φ ¼ MTC−1
η ~s;

and the MAP reconstruction is given by

EQ-TARGET;temp:intralink-;sec3.4;63;347

~Φ ¼ M†

MAP~s;

with control matrix M†

MAP

EQ-TARGET;temp:intralink-;e012;63;305M†

MAP ¼ ðMTC−1
η M þ μ0C−1

Φ Þ−1MTC−1
η : (12)

Note that besides the pseudoinverse, there exist several other
methods based on the above normal equation for solving the
inverse problem. The inverse of the phase covariance C−1

Φ
must be chosen such that it is physically realistic. Typically,
because of singularities (or ill-conditioning) in the turbulence
spectra, it is inevitable to assume some discrete approximation
on C−1

Φ and an additional regularization, which results in some
loss of accuracy but yields stability.30

With the MAP/minimum variance estimators, two kinds of
errors are related: the approximation error that tells how well
the reconstructor approximates the inverse of the sensing oper-
ator P and the noise propagation error related to sensor noise.
The sources of the model error are the chosen basis representa-
tion of the wavefront and the accuracy of the a priori statistical
knowledge of the atmosphere.

In contrary to the least-squares approach, a statistical estima-
tion method necessarily needs regularization parameter tuning
for an accurate wavefront reconstruction. The numerical simu-
lations indicate that the MAP/minimum variance reconstructor

with an optimized parameter μ0 performs better (is more stable)
than the (noise-weighted) least squares solution.33,34

In the following, we briefly focus on the implementation
details of two variants of Bayesian reconstructors that proved
to be efficient in astronomical AO.

3.4.1 MAP reconstructor with modal control of the DM

EQ-TARGET;temp:intralink-;sec3.4.1;326;656

~mi ¼ arg min
~m

�Z
Ω

�
Kdm

i ðx; yÞ −
Xna
l¼1

mlIFlðx; yÞ
�2
dðx; yÞ∶

~m ∈ Rna

�
;

where the coordinates ðx; yÞ describe a point in the pupil plane,
IFl describes the influence function of the l’th actuator, and the
integration is performed over the pupil mask domain Ω.
Afterward, a KL polynomial-based interaction matrix Mm is
constructed by applying to all DM actuators the theoretically
predefined ~mi commands, i.e., they form the closest shape to
the desired KL polynomial. The numerical approximation hmi
to the theoretical mode Kdm

i is represented as linear combination
of DM influence functions:

EQ-TARGET;temp:intralink-;sec3.4.1;326;498hmi ðx; yÞ ¼
Xna
l¼1

mi
lIFlðx; yÞ;

for coefficients mi
l ∈ R.

In this method, CΦ is the von Karman wavefront covariance
matrix restricted to the modal space of the DM. The parameter
μ0, which scales as the inverse of the square of the signal-to-
noise ratio, allows one to weight the sensor noise and atmos-
pheric priors in a flexible way.

This reconstructor is implemented in Octopus.34–36

3.4.2 Zonal minimum variance estimator with regularized
sparse approximation of CΦ

Another variant of MVM that provides high-quality
reconstruction is the zonal minimum variance estimator with
regularized sparse discrete approximation of C−1

Φ , as suggested
in Ref. 30, with

EQ-TARGET;temp:intralink-;sec3.4.2;326;285C−1
Φ ¼ 1

c0
L2;

where L denotes a discrete Laplacian matrix approximating
the Laplacian operator. The constant c0 is physically interpreted
as the strength of the turbulence and additionally normalizes
the approximation of CΦ in order to fit the von Karman turbu-
lence spectrum.30,37

Using this covariance approximation corresponds to regulari-
zation by the l2-norm of the Laplacian, i.e., to solve the
penalized least-squares functional:

EQ-TARGET;temp:intralink-;sec3.4.2;326;154 arg min
~Φ
fkM ~Φ − ~sk2C−1

η
þ μ0

c0
kL ~Φk2g;

with regularization term μ0
c0
kLΦk2 that removes waffle mode and

other high-frequency errors in the phase estimates.37

This reconstructor using DM influence functions as basis
functions is incorporated in YAO, an open-source AO
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simulation tool written in yorick.38 For this study, we have also
implemented it in Octopus. In the numerical implementation,
stabilization with respect to the wavefront sensor noise is per-
formed by filtering out the columns in the registered interaction
matrix corresponding to basis functions whose WFS response
was smaller than a certain predefined value (e.g., expressed
in a percentage of the maximum registered response). This
parameter can be tuned in order to optimize the performance
of the reconstructor for different flux settings or spiders’ thick-
ness. Note that in the numerical simulations, the parameter c0 is
heuristically tuned as well for various atmosphere strengths and
guide star fluxes.

3.5 Performance of Interaction-Matrix-Based MVM
in the Presence of Spiders

3.5.1 Quality

In this section, we summarize and compare the available results
of various versions of the interaction-matrix-based MVM meth-
ods in the presence of spiders. First, we mention the earlier result
achieved in the context of EPICS, the XAO instrument on the
ELT in the case of four thick spiders.39 It was reported therein
that both the zonal and modal reconstructors provide the same
quality in the presence of four spider legs. Apart from that, two
important points were underlined: the light behind spiders needs
to be used in the reconstruction; and the amount of modulation
should not be too large, otherwise, the sensor loses its sensitivity
to low-order modes.

Next, we report in Table 1 on the performance we obtained
with two variants of Bayesian reconstructors in the case of six
thick spiders in the context of the METIS instrument on the ELT.
The results are presented for a median atmosphere, on-axis cor-
rection and high photon flux. Note that the modal MAP result
from Octopus and the zonal reconstructor results from YAO
were obtained using a regular Fried geometry, whereas the
zonal method results from Octopus imply the real ELT M4
geometry.

The zonal minimum variance reconstructor, implemented
both in Octopus and YAO, provides the best quality of 0.89
LE Strehl, which barely decreases for fragmented pupil masks.
For more YAO simulation results obtained for the METIS case
with the zonal minimum variance reconstructor, we refer
to Ref. 40.

The modal MAP reconstructor (as implemented in Octopus)
achieves the same LE Strehl ratio of 0.89 in the case without
spiders. However, in contrary to the zonal approach, its perfor-
mance in the presence of spiders is not as good. After running
multiple tests over a set of regularization parameters, the best LE
Strehl ratio that we were able to achieve is 0.859. In the residual
screens, we always observed uncompensated random segmented
pistons. Note that in order to obtain reasonable results one has to
set the illumination parameter to some value lower than 0.5, i.e.,
to use data from the subapertures partially covered by the
spiders. If one does not use this information, the reconstruction
gets unstable because of the poorly corrected segmented pistons.

Similar results with the MAP reconstructor have been
recently reported in Ref. 41 for an 8-m telescope. First, the
authors therein underline the importance of using the light
from the subapertures partially covered by the spiders, in the
same way that we observed in our tests. Second, the quality
of the spider-free case could not be achieved in the presence
of spiders. The authors in Ref. 41 conclude that the modal
MAP reconstructor as it is known is not able to overcome
the fragmentation problem completely. It is presumed that a
dedicated change of basis functions, which would be defined
on each segment instead of the entire pupil, could potentially
be helpful, but no attempts have been performed so far in
this direction.

An intermediate conclusion is that only one version of the
interaction-matrix-based methods, namely the zonal minimum
variance reconstructor, handles the pupil fragmentation problem
without almost no loss in quality.

3.5.2 Speed

Interaction matrix inversion is related to a high computational
load, which can, however, to a large extent be performed offline.
Assuming that an interaction-matrix-based MVM algorithm
is implemented using conventional matrix inversions and
MVMs, the method requires approximately Oðn3aÞ operations
to compute the control matrix and OðnnaÞ operations to
apply the control matrix.30 The computational complexity
becomes a limitation of these approaches if the values of na
are of order 10,000 as currently under consideration for XAO
systems on ELTs.

4 Advanced Model-Based Reconstructors
Apart from the interaction-matrix-based methods, there exists
plenty of recently developed algorithms based on the math-
ematical analysis of the forward models of the PWFS. The
main feature of these algorithms is a low computational com-
plexity resulting in an adequate handling of wavefront
reconstruction on AO systems in real time and still guaranteeing
high-quality and robustness of the methods. A detailed overview
and comparison of various algorithms can be found in Ref. 42.
Until lately, these methods have been extensively tested with
nonfragmented pupils. The question is: are they also able to pro-
vide reasonable reconstructions with fragmented pupil masks?

Keeping the structure similar to the one in the previous sec-
tion, let us first start with a brief overview of the methods. Note
that, for the sake of brevity, these are presented without any
mathematical details, which can be found in the provided refer-
ences. Then we will have a look at quality and speed these meth-
ods provide for nonfragmented pupils. Finally, we discuss the
performance of the model-based methods in the presence of
spiders.

Table 1 LE Strehl ratio obtained with three versions of the interac-
tion-matrix-based MVM for pupils with and without spiders.

Method
Zonal MMSE

(OCT.)
Zonal MMSE

(YAO)
Modal MAP

(OCT.)

No spiders,
Fried geometry

0.8940 0.89

No spiders,
M4 geometry

0.89

With spiders,
Fried geometry

0.8940 0.86

With spiders,
M4 geometry

0.89
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We consider the following algorithms:

• preprocessed cumulative reconstructor with domain
decomposition (P-CuReD)9–11

• convolution with the linearized inverse filter (CLIF)9,12,43

• pyramid Fourier transform reconstructor (PFTR)12,43

• finite Hilbert transform reconstructor (FHTR)9

• singular value type reconstructor (SVTR)44

• a number of linear iterative methods applied to pyramid
sensors like conjugate gradient for the normal equation
(CGNE), steepest descent (SD), Landweber iteration,
and Kaczmarz versions of the previous mentioned
algorithms45–47

• nonlinear Landweber and Landweber–Kaczmarz
iteration.48

The first three methods, the P-CuReD, the CLIF, and the
PFTR are all using Fourier domain analysis of the underlying
(modulated and nonmodulated) pyramid sensor operators and
their approximations. The CLIF and PFTR suggest different
numerical implementations of the same idea of reconstructing
the wavefront spectrum from the data spectrum using the
known Fourier domain relation between both. The PFTR applies
the corresponding inverse Fourier domain filter to the data spec-
trum, the CLIF algorithm works in the spatial domain. The P-
CuReD correlates the pyramid with the SH sensor and by
employing the Fourier domain relation between both, suggests
a simple convolution-type conversion of pyramid sensor data to
SH-like data. Subsequently, the CuReD is applied to the prepro-
cessed pyramid data, a method that was originally developed for
the SH-WFS.49–51

The FHTR and the SVTR are based on a simplification of the
nonmodulated pyramid sensor model represented as the finite
Hilbert transform of the incoming wavefront. The FHTR applies
a direct inversion formula of the finite Hilbert transform, the
SVTR uses a version of the involved operators’ SVD for wave-
front estimation. In contrast to MVM approaches, the algorithms
consist of analytical derivations of the mentioned tools for
inversion.

In the iterative methods, we use well-known mathematical
algorithms for solving the inverse problem of wavefront
reconstruction from pyramid sensor data, namely CGNE, SD
method, SD-Kaczmarz method, Landweber iteration, and
Landweber–Kaczmarz iteration. All algorithms are applicable
to pyramid sensors with and without modulation, have compa-
rable numerical complexity, and provide similar reconstruction
quality. Outstanding are the Kaczmarz versions of the algo-
rithms, which enable a sophisticated combination of the two
data sets ~sx and ~sy for reconstruction. Although all mentioned
model-based reconstructors first were introduced based on a lin-
earization of the pyramid sensor model, for Landweber and
Landweber–Kaczmarz iteration, we additionally considered their
nonlinear versions in order to develop nonlinear reconstructors.

4.1 Quality and Speed Performance Without
Spiders

For a detailed comparison of the methods with respect to the
reconstruction quality, we refer to the corresponding publica-
tions. Here we only briefly mention that in closed loop simula-
tions all the model-based methods achieve a quality close to that

of interaction-matrix-based approaches with some of them even
slightly outperforming the latter. In Table 2, we provide a com-
parison of wavefront reconstruction algorithms for pyramid sen-
sors in terms of their computational complexities. From this
table, one can see that all recently developed model-based
reconstruction algorithms require much fewer computations
to be performed than an MVM implementation. The P-
CuReD algorithm reaches the highest quality results in a variety
of tested conditions, and at the same time has the lowest, namely
linear, computational complexity. In Refs. 52 and 53, AO sim-
ulation tools’ users compared the performances of the modal
MAP method with the P-CuReD for XAO settings. In
Ref. 53, the MVM and P-CuReD algorithm give the same
reconstruction quality with only very slight discrepancies in
some of the test cases. Moreover, in Refs. 9–11, it was
shown that the P-CuReD provides a significantly improved
quality in the low-flux cases compared to an interaction-
matrix-based reconstructor, and also that it converges to high
Strehl ratios faster than the tested MVM approach.

Another point we would like to stress here is that all our
model-based reconstructors are free from the time-consuming
precomputation of matrices and fine tuning of the regularization
parameters associated with MVM approaches. Since there are
no intrinsic regularization parameters necessary to consider dur-
ing the reconstruction process, no optimization is needed if
atmospheric conditions change. This facilitates the usage of
the methods by external users, as confirmed by Refs. 52 and
53 with P-CuReD applications and Ref. 54, where the
CuReD method, which was originally developed for the SH
sensor49,50 and nowadays also constitutes a part of the P-
CuReD method for pyramid sensor, has been successfully tested
on-sky.

4.2 Adapting Advanced Reconstructors to
Segmented Pupils

In this section, we describe our first approaches to overcome the
difficulties caused by pupil fragmentation or spider effects when
the width of the spiders is no longer negligible compared to the
size of the subapertures. Numerical investigations were per-
formed for the ELT having a primary mirror divided into six
segments as shown in Fig. 1. As reconstruction method, we
use the P-CuReD algorithm. Almost as important as the
width of the spider legs is their placement. If the spiders are

Table 2 Comparison of the currently existing algorithms for wave-
front reconstruction from pyramid sensor data in terms of their flexi-
bility and computational complexity.

Algorithm

Modulation

ComplexityNo Small Large

Interaction-matrix-based MVM ✓ ✓ ✓ Oðn2
aÞ

FHTR and SVTR ✓ Oðn3∕2
a Þ

Iterative methods ✓ ✓ ✓ Oðn3∕2
a Þ

CLIF ✓ ✓ ✓ Oðn3∕2
a Þ

PFTR ✓ ✓ ✓ Oðna log naÞ

P-CuReD ✓ ✓ ✓ OðnaÞ
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in parallel with the x and y axes, some basic attempts described
in the following succeed. In contrast, for arbitrarily located spi-
ders, we examine poor wavefront reconstruction suffering from
differential piston influences. Note that the following described
attempts for wavefront reconstruction in the presence of six tele-
scope spiders were only investigated with application of the
P-CuReD algorithm. Different reconstruction algorithms will
behave differently.

One idea is to make the illumination factor necessary
for the usage of subapertures for wavefront reconstruction
very low, i.e., utilizing (almost) all available subapertures for
reconstruction, also those being less illuminated. This method
combined with the reconstruction algorithm P-CuReD does not
lead to success since the light suffers from obstruction effects
especially at the boundaries of the pupil segments. The wave-
front reconstruction is adversely influenced on the whole pupil
by differential piston effects as seen in Fig. 2 for different
illumination factors.

Another approach to overcome the effects of pupil segmen-
tation is data interpolation or interpolation of the reconstructed
phase under the spider legs. Instead of using defective measure-
ments under the legs provided by the pyramid sensor, we
generate data or reconstructions artificially in these areas. For
that purpose, we considered bilinear and spline interpolation.
Unfortunately, these approaches do not eliminate differential
piston effects.

A more sophisticated attempt incorporates the pyramid sen-
sor model in the measurement continuation process by applying
an iterative measurement extension method already presented in
Refs. 44 and 55. The idea in Ref. 44 was originally developed
for wavefront reconstruction on annular, nonsegmented tele-
scope pupils. The basic concept is to generate artificial but pyra-
mid related data under the spider legs by application of the finite
Hilbert transform, which is a simplification of the Fourier
optics-based pyramid sensor model. Thus the provided data cor-
respond better to pyramid measurements as it is the case for a
general interpolation procedure described above. However, the
simulation results are quite similar to the approach using bilinear
or spline interpolation, and differential piston effects are devel-
oping within time and make the reconstruction poor.

An additional experiment is to replace the obstructed data by
zeros, i.e., it is assumed that the wavefront is planar in the areas
obstructed under the spider legs. Note that zero padding is suc-
cessfully used for the central obstruction induced by a secondary
mirror for some of the reconstructors mentioned in this section,
e.g., the SVTR. In contrast to obstruction induced by spiders, a
central obstruction does not cause segmented mirrors and hence
does not induce differential pistons. Several numerical simula-
tions show that the results of this approach differ significantly
for different spider leg locations. In particular, if one considers
four spider legs parallel to x and y axes (as those first investi-
gated for SH sensors in Ref. 1), the zero padding approach gives
satisfying reconstruction quality with the pyramid sensor.
Considering the six ELT legs, the approach again suffers
from differential piston development as shown in Fig. 3.

Approaches like jump minimization between the segments
by boundary integral coupling do bring quality improvements
but not as high as we have hoped for. For SH sensors, this
method will precisely be described in an upcoming paper of
our group. Actuator coupling/slaving of those actuators that
are situated at the boundary of spider legs is a hot topic for pyra-
mid sensors on ELTs, especially for wavefront sensing at shorter
wavelengths than K-band.

Altogether, the above-described methods do not satisfacto-
rily handle the impact of 1 or 2 subaperture thick spiders on
the wavefront correction performance. The negative influences
of randomly appearing piston modes on the wavefront
reconstruction gave us the motivation to develop ideas to sep-
arately examine the segmented pistons. After trying all the
described methods, a way for successfully eliminating spider
obstruction effects was found. The idea is to reconstruct the seg-
mented piston modes separately from other frequencies in the
wavefront. Within these attempts, which we recap as split
approach, one still can use the fast interaction-matrix-free wave-
front reconstruction algorithms presented in this section and at
the same time obtain stable wavefront correction in the presence
of spiders.

In the next section, we introduce the basic concept of the split
approach and two different algorithms tested for direct segment
piston reconstruction. Due to the high-end performance of the

Fig. 1 ELT pupil mask with spiders. The ELT will consist of a 39.3-m-
diameter primary mirror and a 11.1-m-diameter secondary mirror,
which will be supported by 6 spiders each being 50-cm thick.
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Fig. 2 Quality results for different illumination factors. The SE Strehl
ratios for wavefront reconstruction using the P-CuReD without any
specific telescope spider handling. The three lines indicate the
usage of more or less illuminated pixels for WF reconstruction.
The reason for the generally poor performance is segmented piston
modes which go out of control. Despite the poor results (with LE Strehl
ratios of less than 0.5 instead of ∼ 0.9 for spider-free simulations), one
can see that an illumination factor slightly under 50% is preferable as
already discussed in Sec. 3.5.1 for the modal MAP reconstructor.
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P-CuReD, both in terms of quality and speed, we choose this
method as one of the components in our split approach aimed
at segment-piston-free reconstruction of the wavefront for
segmented pupils.

5 Split Approach
In this section, we describe robust algorithms that allow to
compute optimal mirror configurations from signals containing
telescope spider obstruction by dividing the wavefront
reconstruction into two parts:56

1. Piston-free wavefront reconstruction on each segment:
This wavefront reconstruction method handles all
modes seen by the PWFS except modes of order
zero (piston modes) on each segment.

2. Direct segment piston reconstruction: Here, we focus
on modes of order zero on each segment solely.

The reason why we suggest to split piston reconstruction
from the full phase reconstruction is twofold. On the one
hand, we want to make stable wavefront reconstruction in the
presence of spiders feasible with the computationally efficient
model-based algorithms presented in Sec. 4. Those algorithms
were developed using the forward model of the sensor for annu-
lar apertures that do not include segmented pupils and spider
effects. Straightforward attempts as described in Sec. 4.2 of
applying these algorithms to sensor data “spoiled” by spider
obstruction failed so far. On the other hand, it was recognized
that the interaction-matrix-based approaches, as described in
Sec. 3, are able to correct for differential pistons but are very
time-consuming. The related computational effort may be
affordable for the METIS system but hardly feasible for XAO
systems. Therefore, our goal was to combine the P-CuReD (or
any other model-based wavefront reconstruction method) and
the advantages of interaction-matrix-based reconstruction to
obtain a fast and robust reconstruction approach for segmented
pupils having less computational complexity than an MVM.

We recall that P describes the pyramid sensor operator, Φ is
the incoming phase, and ~s is the pyramid sensor measurements.
Usually, all wavefront modes (frequencies) that are seen by the
PWFS and afterward corrected are treated within the same
wavefront reconstruction process. In the split approach, we
separate the incoming wavefront Φ into the parts:

EQ-TARGET;temp:intralink-;e013;326;752Φ ¼
Xk
i¼1

Φi þ pi; (13)

where Φi indicates the piston-free wavefront reconstruction on
segment Ωi. The corresponding reconstruction procedure
denoted by P̃† is provided by any of the existing model-
based algorithms (mentioned in Sec. 4), which provide high-
quality reconstruction on each segment. The term pi describes
the corresponding piston information on every segment for
i ¼ 1;2; : : : ; k calculated independently using direct segment
piston reconstruction methods that will be described in
Sec. 5.2 and are in the following denoted by Π.

Hence, we separate the whole wavefront reconstruction into
two parts:

EQ-TARGET;temp:intralink-;e014;326;589Φ ¼ Φpistonfree þΦpiston ¼ P̃†~sþΠ~s; (14)

which is feasible in closed loop AO for an almost linear pyramid
sensor response.19,57

5.1 Piston-Free Wavefront Reconstruction on
Segments

In this section, we focus on piston-free wavefront reconstruction
on segments. For the estimation of the wavefront Φpistonfree, we
can use any of the existing fast model-based wavefront
reconstruction algorithms mentioned in Sec. 4. These methods
have shown exceptional wavefront correction quality on nonseg-
mented pupils, i.e., on the full annular telescope aperture in the
following denoted by Ω. The spider legs divide the aperture into
segments meaning that for k spider legs we obtain k disjoint
segments indicated by Ωi; i ¼ 1;2; : : : ; k (for instance the six
spider legs of the ELT shown in Fig. 1). For segmented pupils,
the wavefront reconstruction method P̃†—in addition to stan-
dard wavefront reconstruction requirements—fulfills two
conditions:

1. The method is implemented on segments Ωi,
i ¼ 1;2; : : : ; k instead of the full mask Ω.

2. The reconstruction Φi on every segment Ωi,
i ¼ 1;2; : : : ; k needs to be piston-free.

Note that condition 2 does not constitute a restriction since
one can always compute the local piston information of a full
segment from the reconstructed wavefront and subtract it after-
ward. Condition 1 may possibly be attenuated to an algorithm
being implemented on the full aperture but dividing the
reconstruction into segments thereafter. In this case also, the
elimination of zero-order modes on the segments can be per-
formed separately from the reconstruction process. However,
we clearly want to point out that we did not investigate this
idea in detail. Until now, we only used a segment-piston-free
reconstruction method implemented on the segments. An analy-
sis of these considerations will be part of a subsequent study.

For the segment-piston-free wavefront reconstruction, we
use the P-CuReD9–11 applied to each segment. With linear com-
putational complexity, this algorithm is the fastest method avail-
able for wavefront reconstruction from pyramid sensor data and,
at the same time, it provides a reconstruction quality close to the
theoretical limits.

–1

–0.5

0

0.5

1

Fig. 3 Residual screen in radians (evaluated in K-band) for the “pad-
ding with zeros under the spider legs” approach. Attempts like meas-
urement continuation, interpolation of data, or the reconstructed
phase as well as reconstruction using the light under the support
structures deliver similar poor results.
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5.2 Direct Segment Piston Reconstructors

Now we introduce two methods for direct segment piston
reconstruction denoted by Π providing the piston information
on the disjoint segments ðpiÞi¼1;2;: : : k divided by k spider
legs. All of them follow the idea of an interaction-matrix-
based reconstruction using MVM. In contrast to the conven-
tional approach, we now do not focus on the reconstruction
of the complete wavefront, but only on the reconstruction of pis-
ton modes on segments. The first method (see Sec. 5.2.1 for
details) uses a zonal interaction matrix containing the sensor
response to every single zonal basis function. The second
one (see Sec. 5.2.2 for details) is rather modal with a very
small number of modes used as basis. Namely, we use a segment
basis consisting of k modes, where each mode depicts a piston
on a given segment.

5.2.1 Direct segment piston reconstructor I:
single-poke-approach

We start with wavefront reconstruction using a full zonal inter-
action matrix as already described in Sec. 3 and transform this
algorithm to the reconstruction of segment pistons solely.

For the so-called single-poke-approach, we measure the
response of the pyramid sensor for every basis function.
More precisely, we use the full interaction matrix M of the sys-
tem as described in Eqs. (5) and (6) computed for a set of zonal
basis functions. The amplitude corresponding to the mentioned
basis functions has to be small to ensure a linear response of the
pyramid sensor. The control matrixM†

α ∈ Rnc×2n is created as in
Sec. 3.4.2 using the squared Laplacian as a regularization term.

Since we are only interested in the reconstruction of segment
pistons and omit the reconstruction of other modes, the dimen-
sion of the problem is drastically reduced. Assume we have the

complete wavefront ~Φ ¼ M†
α~s reconstructed. Extraction of the

segment piston information ~p ¼ ðpiÞ1≤i≤k from the known

wavefront ~Φ is obtained by averaging the phase values within

each segment. This step is modeled as a multiplication of ~Φ ∈
Rnc with a matrix Q ∈ Rk×nc , where the i’th row of Q contains a
vector representation of the segment Ωi divided by the number
of active subapertures on Ωi (for the averaging). The application
of the matrix Q leads to

EQ-TARGET;temp:intralink-;e015;63;286

~p ¼ Q ~Φ ¼ QM†
α~s ≕ Π1~s; (15)

with a dense but small matrix Π1 ∈ Rk×2n. This means the pis-
ton information on the segments is reconstructed from the given
sensor data with a linear computational complexity. Hence, we
reduce the computationally expensive full interaction matrix
approach with complexityOðnnaÞ to a cheap direct segment pis-
ton reconstruction method. For usage of the P-CuReD within the
split approach, the partition of wavefront reconstruction into
separate piston and higher-order frequencies reconstruction
only slightly decreases the speed of the reconstruction method,
which is still faster as the full interaction matrix approach.
Of course, the interaction matrix of the system still needs to
be set up for the application of this direct segment piston
reconstruction method but these calculations are done offline.

In Fig. 4, we provide an illustration to an Octopus simulation
using the split approach with the P-CuReD and the first direct
segment piston reconstructor (DSPR). Here we focus on the
reconstructions in the initial loop steps, when the sensor is

yet far from its linear regime and the loop is only getting closed.
One can see that the reconstruction is reasonable and provides a
stable convergence. The corresponding closed loop results for a
longer simulation are presented in Sec. 6.

5.2.2 Direct segment piston reconstructor II: segment-
poke-approach

Inspired by the simple relation Eq. (15) connecting segment
piston values ~p with the sensor data ~s through a small-size
matrix Π1, we want to formulate another direct segment piston
reconstruction approach, which will allow us to skip the com-
putationally expensive and time-consuming step of setting up
the full interaction matrix of the system. Rewriting Eq. (15) as

EQ-TARGET;temp:intralink-;sec5.2.2;326;173~s ¼ Π†

1 ~p;

we see that, formally, it is possible to define a small interaction
matrix of the system in the basis consisting of only a few
segment pistons pi, i ¼ 1; : : : ; k.

We again consider arbitrarily located telescope spiders
having k spider legs, i.e., dividing the aperture into k disjoint
segments Ωi, i ¼ 1;2; : : : ; k. The effects of a piston offset
with amplitude c on a single segment are described by
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Fig. 4 Illustration of wavefront reconstruction with the split approach
at the third time step in an AO loop performed in Octopus. The first line
shows an incoming screen given in radians (K-band) and the corre-
sponding pistons on the six segments. The second line shows the
segment-piston-free wavefront reconstruction using the P-CuReD
on segments and the direct segment piston reconstruction described
in Sec. 5.2.1. In the last line, we see the combination of both, i.e., the
whole wavefront reconstruction, and the difference between the
incoming screen and the final reconstruction. Even though the pyra-
mid sensor is not in its linear regime yet, the algorithm already gives
reasonable reconstructions of the piston-free wavefront as well as the
segment pistons. The simulation parameter corresponds to the ones
specified in Sec. 6.1.
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EQ-TARGET;temp:intralink-;sec5.2.2;63;752~si ¼ P½c · XΩi
ðx; yÞ� for i ¼ 1;2; : : : ; k;

with

EQ-TARGET;temp:intralink-;sec5.2.2;63;718XΩi
ðx; yÞ :¼

�
1; for ðx; yÞ ∈ Ωi

0; else
;

denoting the characteristic functions of the telescope aperture
segments Ωi. Again, we assume that the pyramid sensor fulfills
the linearity assumption if c is chosen small enough.

With the measurement vectors ~si ∈ R2n for every segment
Ωi, i ¼ 1;2; : : : ; k, we obtain a piston interaction matrix Mp ∈
R2n×k consisting of

EQ-TARGET;temp:intralink-;sec5.2.2;63;610Mp ¼ ð ~s1 ~s2 : : : ~sk Þ:

The pyramid response to a segment poke is shown in Fig. 5.
While in the previous method a very time-consuming precom-
putation of the full interaction matrix is required, the matrix nec-
essary for this approach only has dimension 2n × k, and hence
its computation is much cheaper. Therefore, setting up the
matrix containing the WFS response to segment piston
modes can be recomputed quickly for changing seeing condi-
tions and readily performed online.

Now the piston reconstruction on every segment is described
as minimization of

EQ-TARGET;temp:intralink-;sec5.2.2;63;469min
~p
kMp ~p − ~sk22 þ αkΓ~pk22;

for some suitable chosen Tikhonov matrix Γ and regularization
parameter α > 0. Solving the equation in a least squares sense
leads to the normal equation:

EQ-TARGET;temp:intralink-;sec5.2.2;63;397MpT

Mp ~pþ αΓTΓ~p ¼ MpT

~s;

where the right-hand side represents a projection of the measure-
ments containing all modes seen by the pyramid sensor ~s to data
MpT

~s including piston information only. Using Tikhonov regu-
larization, we obtain the piston control matrix Π2 ∈ Rk×2n for
the direct piston reconstruction on segments. The segment pis-
ton ~p ∈ Rk are then obtained by

EQ-TARGET;temp:intralink-;sec5.2.2;63;295

~p ¼ Π2~s:

5.3 Fast and Robust Wavefront Reconstruction
Under Pupil Segmentation Using the Split
Approach

The general scheme of the split approach for wavefront
reconstruction using one of the above-introduced direct segment
piston reconstruction methods is described by Algorithm 1.

The segment piston control matrices Πi, i ¼ 1;2 are dense
but only of dimension k × 2n, which leads to an optimization
of the proposed approaches with respect to computational com-
plexity. The expensive steps can be precomputed offline, thus,
the algorithms scale linearly. This is a clear advantage to the
computationally expensive wavefront reconstruction using full
interaction-matrix-based MVM approaches as indicated in
Fig. 6. For a moderately large-scale SCAO system such as
METIS, the gain in the computational efficiency provided by
the split approach is of order 104. For an extremely large-

scale SCAO system as the planned XAO system, the corre-
sponding gain is of order 105.

5.4 Details on the Realization

At the end, we will focus on a few numerical implementation
details of the split approach, namely the incorporated pyramid
sensor model, illumination factor, loop gain, and phase
ambiguity.

For the proposed direct segment piston reconstruction meth-
ods, the nonlinear PWFS model including interference effects
can be taken into account for the calculation of the piston control
matrices Πi, i ¼ 1;2.

Our numerical simulations and those performed in Ref. 41
show that for wavefront estimation under pupil fragmentation

Fig. 5 Pyramid sensor measurements for a single-segment piston
mode of height 5 × 10−8 m. The first column shows the segment pis-
ton, the second and third column illustrate the corresponding sensor
measurements in x and y directions. The sensor measurements are
shown in the range [−1.5 × 10−8 m, 1.5 × 10−8 m].
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it is important to choose an appropriate illumination factor
determining that subapertures are active and therefore used
for wavefront reconstruction. As already discussed, we perform
the segment-piston-free reconstruction on disjoint segments,
hence we only use subapertures that are illuminated at least
75%. In contrast, for the DSPR, usage of measurements on
less illuminated subapertures is crucial.

The loop gains for the two parts of the split approach have to
be considered separately. We identify an optimal loop gain for
the segment-piston-free wavefront reconstruction using the
P-CuReD and another one for the direct segment piston
reconstruction. At the beginning of a closed loop simulation,

it is crucial to avoid phase ambiguity caused by the sinusoidal
part of the pyramid data, meaning that piston offsets of size 2π
radians in the phase cannot be distinguished by the pyramid sen-
sor but heavily influence the image quality.58 Due to the non-
linearity of the PWFS (“optical gain”) and the need to
correct low frequencies fast, we use a higher integrator control
loop gain for the DSPR in the first iterations. This results in a
stronger emphasis on the correction of low-order modes and
provides an adequate control of piston offsets for data corre-
sponding to larger phases.

The last step of the algorithm contains the projection of the
reconstructed wavefront on the DM. One can, therefore, either
solve Eq. (7) or simply evaluate Φ at the actuator positions. We
did choose the second approach. To be able to control also
actuators outside the reconstruction area, we smoothly extend
the reconstruction Φ to a larger domain covering all used
DM actuator positions.

6 Numerical Validation

6.1 Simulation Environment and Parameters

We use the simulation tool Octopus35,36 provided by the
European Southern Observatory and study the METIS instru-
ment having an SCAO system incorporated. As one of the
three first light instruments of the ELT, METIS will allow inves-
tigations of exoplanets concerning physical and chemical prop-
erties like weather, temperature, seasons, or the composition of
their atmospheres. It will, among others, focus on proto-plan-
etary disks, the formation of planets, and the Solar System as
well as the growth of supermassive black holes. The science
wavelengths of the instrument range from 3 to 19 μm, the wave-
front sensing is performed at 2.2 μm. For the METIS instru-
ment, an annular mask is currently considered with an outer
diameter of 37 m and an inner diameter of 11.1 m (30%),
i.e., all edges of the real ELT primary mirror having a diameter
of 39 m are cropped such that we obtain a circular area. As a
sensing device, we simulate a PWFS having 74 × 74 subaper-
tures corresponding to a subaperture size of 0.5 m. The simu-
lation grid size is selected as 740 × 740 pixels on the aperture
resulting in a resolution of 0.05 m per pixel for a 37-m telescope.

The phase screens of our simulation are based on the von
Karman atmospheric model having 35 layers and an outer
scale of L0 ¼ 25 m. The layer model of the atmosphere ranging
from 30 m to 26.5 km above the observatory’s platform was

Algorithm 1 Split approach.

choose segment-piston-free wavefront reconstruction method P̃†

choose direct segment piston reconstruction method Π

for all time steps do

get measurements ~s

for segments i ¼ 1;2; : : : ; k

EQ-TARGET;temp:intralink-;t003;62;621

~Φi ¼ P̃†ð~sÞ
substract global piston for every ~Φi if necessary

end for

EQ-TARGET;temp:intralink-;t003;62;555

~p ¼ Π~s

EQ-TARGET;temp:intralink-;t003;62;542

~Φ ¼
Xk
i¼1

~Φi þ pi

end for
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Fig. 6 Logarithmic plot of the approximate complexities of the MVM
methods using the full control matrix (dotted line) and of the split
approach using any of the described methods for direct segment pis-
ton reconstruction applying the small-size control matrices (solid line).

Fig. 7 Actuator positions of the ELT M4 geometry implemented in
Octopus. The spider boundaries are indicated as lines.

Journal of Astronomical Telescopes, Instruments, and Systems 049005-12 Oct–Dec 2018 • Vol. 4(4)

Hutterer et al.: Advanced wavefront reconstruction methods for segmented Extremely Large Telescope pupils using pyramid sensors



provided by the European Southern Observatory. Two seeing
conditions were simulated: median with the Fried parameter
r0 at 0.5 μm ¼ 0.157 m and very bad with r0 at 0.5 μm ¼
0.097 m. We consider two different photon fluxes of 600 and
100 incident photons per subaperture per frame corresponding
to a guide star magnitude of 8 or 10, respectively.

A key element of every AO system is the DM. It provides fast
steering capabilities to compensate for wavefront aberrations
caused by atmospheric turbulence and telescope perturbations
in real time and hence allows one to optimize the telescope per-
formance. The actuator positions of the M4 DM used in our
Octopus simulations are shown in Fig. 7. We use the M4
influence functions internally incorporated in Octopus.
Altogether, we have 3874 active subapertures and 5190 active
actuators in use. All test case parameters are summarized in
Table 3.

6.2 Numerical Results

A numerical performance analysis and a comparison of the
approaches in terms of reconstruction quality for the above-
described simulation environment are provided in Tables 4–6
and Fig. 8. The three tables present the long-exposure Strehl
ratios evaluated at three different wavelengths λ ¼ 2.2 μm,
λ ¼ 3.7 μm, and λ ¼ 10.0 μm correspondingly. In each of
these three tables, the test cases cover two photon fluxes of
600 and 100 photons/subaperture/frame and three zenith angles
of 0 deg, 30 deg, and 60 deg. Each table demonstrates the results
obtained with the P-CuReD for a spider-free simulation as
benchmark and the spider effected results obtained within the
split approach using each of the DSPR.

From the tables, we see that, compared to the case without
spiders, some small loss in quality is present when pupil seg-
mentation due to spiders is taken into account and solved
with the split approach. Moreover, one can see that the loss
increases slightly for larger zenith angles and that the DSPR
I provides slightly higher Strehl ratios compared to the
DSPR II. Figure 8 shows the corresponding short-exposure
Strehl ratios over the simulation time demonstrating that the
DSPR I is indeed more stable compared to the DSPR II.
More precisely, the performance of the two methods is not

Table 3 Simulation parameters used in the tests.

Simulation parameters

Telescope diameter 37 m

Central obstruction 11.1 m, i.e., 30%

Pupil mask ELT pupil with 50-cm wide
spiders

Pupil segments 6

Science target On-axis (SCAO)

WFS PWFS

Sensing band K (2.2 μm)

Evaluation bands K (2.2 μm)

L (3.7 μm)

N (10.0 μm)

Modulation 4λ∕D

Controller Integrator

Atmospheric model von Karman

Number of simulated layers 35

Outer scale L0 25 m

Atmosphere Median

Fried radius r 0 at λ ¼ 500 nm 0.157 m, 0.097 m

Coherence time τ0 at λ ¼ 500 nm 5.35 ms

Number of subapertures 74 × 74

Minimum subaperture illumination 45%

Number of active subapertures 3874 out of 5476

Linear size of simulation grid 740 pixels

DM geometry ELT M4 model

DM delay 1 frame

Number of active actuators 5190

Detector read-out noise 1 electron/pixel

Background flux 0.431 photons/pixel/frame
or
4.19 ADU∕m2∕ms∕arcsec2

Frame rate 500 Hz

Photon flux or guide star
brightness

[100, 600] photons/
subaperture/frame or [8, 10]
mag

Zenith angle [0 deg,30 deg,60 deg]

Simulation time 2 s (1000 iterations)

Table 4 Long-exposure Strehl ratios in K-band (2.2 μm) after 1000
closed loop simulation steps. As reconstruction method, we use the P-
CuReD. We compare the results for a benchmark simulation without
spiders using the P-CuReD only and employing the split approach
combined with the proposed DSPRs in the presence of telescope
spiders.

Photon
flux

Zenith
angle
(deg)

No
spiders

DSPR
I

DSPR
II

Theoretical
limit

600 0 0.8851 0.8775 0.8654 0.8882

30 0.8690 0.8597 0.8462 0.8820

60 0.7799 0.7660 0.7412 0.7956

100 0 0.8741 0.8650 0.8523

30 0.8578 0.8473 0.8327

60 0.7712 0.7551 0.7307
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identical because phase averaging over the segments and matrix
inversion are interchanged in the DSPR II compared to the
DSPR I. As confirmed in Fig. 9 showing the residual pistons
on each segment for the DSPR I, the reconstructions obtained
with the split approach are free from large differential piston
effects.

Based on the provided reconstruction quality and stability
features, the conclusion is that the DSPR I method is preferable.

That is why we focused on the DSPR I in further numerical stud-
ies with Figs. 10 and 11 presenting acceptable METIS results
obtained at a zenith angle 60 deg under very bad seeing condi-
tions (nominal r0 at 0.5 μm ¼ 0.064 m), which corresponds to
r0 at 2.2 μm ¼ 0.379 m.

Table 6 Long-exposure Strehl ratios in L-band (3.7 μm) after 1000 closed loop simulation steps using the P-CuReD in all simulations.

Flux Zenith angle (deg) No spiders DSPR I DSPR II ESO goal ESO requirement Theoretical limit

600 0 0.9577 0.9547 0.9500 0.9605

30 0.9515 0.9478 0.9425 0.9583

60 0.9157 0.9095 0.8990 0.57 0.9277

100 0 0.9535 0.9499 0.9449

30 0.9472 0.9429 0.9371 0.80 0.60

60 0.9121 0.9052 0.8944

Table 5 Long-exposure Strehl ratios in N-band (10 μm) after 1000 closed loop simulation steps using the P-CuReD in all simulations.

Flux Zenith angle (deg) No spiders DSPR I DSPR II ESO goal ESO requirement Theoretical limit

600 0 0.9941 0.9937 0.9930 0.9946

30 0.9932 0.9927 0.9919 0.9943

60 0.9880 0.9871 0.9855 0.60 0.9901

100 0 0.9935 0.9930 0.9923

30 0.9926 0.9920 0.9911 0.95 0.93

60 0.9875 0.9864 0.9848
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Fig. 8 Robustness of the DSPR I and the instabilities of the DSPR II
method illustrated by the corresponding short-exposure Strehl ratios
in K-band for 1000 time steps of test case 1 (600 photons/subaper-
ture/frame and zenith angle 0 deg).
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Fig. 9 Residual pistons in radians (K-band) on the disjoint segments
for the split approach using the DSPR I. The photon flux corresponds
to 100 photons/subaperture/frame using a zenith angle of 30 deg.
There is almost no residual piston development. Additionally, the
reconstructions do not suffer from the phase ambiguity of the pyramid
sensor since the piston offsets between the segments are very much
smaller than 2π radians. The global piston is subtracted from each of
the segment pistons for better visibility.
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However, one should keep in mind that in case the atmos-
pheric or observational conditions change, registration and
inversion of an interaction matrix will be required. This process
is very time-consuming and may lead to a loss of precious
operational time on the telescope. On the contrary, in the
DSPR II method, the underlying interaction matrix is much
smaller, therefore, significantly less operations are needed for
its registration and inversion. Since the DSPR II method pro-
vides acceptable reconstruction quality as well, it can be used
at least as a substitute of the DSPR I method when the latter
requires some updates to be performed.

In addition, Tables 5 and 6 contain the ESO goals and ESO
requirements. Note that both are defined as performance eval-
uations over at least 15 min of telescope operations under nomi-
nal conditions. These include some additional error sources,

e.g., wind induced vibrations or noncommon path aberrations
(NCPAs), which were not taken into account in the presented
simulations. Therefore, we cannot straightforwardly compare
our results that evaluate only 2 s of operation, with the ESO
goals and requirements, but we can still see that there is a
big safety gap allowed for vibrations and other error terms
reducing the quality. We would like to point out that we are
aware of those additional error sources and consider them in
separate dedicated tests. For instance, the influence of wind
shake and NCPAs on the METIS performance has been previ-
ously analyzed in Ref. 40. In this paper, we focus on eliminating
the impact of spiders in the first turn. Analyzing and reducing
different error terms one-by-one allows one to achieve confi-
dence in the final performance of the instrument.

Moreover, in each of the tables, we show the roughly esti-
mated theoretical limit of the achievable long-exposure Strehl
ratio. These rough estimates are obtained using the assumption
that in the high-flux case the reachable quality is limited from
above by the two main error sources, the fitting, and the tem-
poral delay error. Following the approach in Ref. 34, we evalu-
ate the fitting error by

EQ-TARGET;temp:intralink-;sec6.2;326;521σ2fitting ¼ 0.287ðd∕r0Þ5∕3;

where d denotes the average actuator’s distance, r0 is the Fried
radius, and the delay error by

EQ-TARGET;temp:intralink-;sec6.2;326;466σ2delay ¼ 0.962ðτ∕τ0Þ5∕3;

where τ is the delay and τ0 is the coherence time of the atmos-
pheric turbulence.

Furthermore, we want to remark that the results presented in
the tables were obtained with the same loop gains for different
guide star magnitudes and zenith angles, which clearly under-
line the stability of the algorithms. The DSPR II was experi-
enced to be more sensitive to the choice of the loop gain
than the DSPR I. The quality results of several numerical sim-
ulations can even be slightly improved by applying a loop gain
being optimized with respect to the special parameter choices of
the individual test cases.
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Fig. 10 Simulations without telescope spiders and with telescope spi-
ders and the split approach under very bad seeing conditions illus-
trated by the corresponding short-exposure Strehl ratios in K-band
for 1000 time steps (600 photons/subaperture/frame and zenith
angle 60 deg).
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Fig. 11 Residual pistons in radians (K-band) on the disjoint segments
for the split approach using the DSPR I. The photon flux corresponds
to 600 photons/subaperture/frame using a zenith angle of 60 deg and
very bad atmosphere. There appear slight differential pistons, which
are continuously corrected during the AO loop. The global piston is
subtracted from each of the segment pistons for better visibility.
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Fig. 12 Simulated radially averaged PSF at a wavelength of
λ ¼ 3.7 μm obtained with the DSPR I method in the case of a bright
guide star and zenith angle 0 deg.
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In order to quantify the achieved raw contrast, we plot in
Fig. 12 the simulated radially averaged PSF obtained with
the DSPR I method. The area of interest, where the correction
actually happens, is defined by the number of actuators and the
telescope diameter as naðλ∕DÞ. For λ ¼ 3.7 μm, the best cor-
rected central area of the PSF has a square shape with a side
length of 1546 mas. The maximum achieved contrast is of
order 10−6 within the control area of the DM. Figure 13
shows the difference in the simulated radially averaged point
spread function (PSF) at a wavelength of λ ¼ 3.7 μm obtained
with the DSPR II method compared to the DSPR I in the case of
a bright guide star and zenith angle 0 deg.

7 Conclusions
The first part of this paper provided a brief overview on the abil-
ity of existing algorithms to reconstruct wavefronts from PWFS
data in the presence of support structures for the secondary mir-
ror, the so-called spiders. It is known that a partial or complete
shading of subapertures, depending on the thickness of the spi-
der legs, leads to difficulties in controlling piston modes on dis-
joint pupil segments. We have shown that on the one hand, at
least some variants of the interaction-matrix-based MVM
approaches are able to handle spider obstruction effects success-
fully, though they are known to be computationally demanding.
On the other hand, there exist several fast interaction-matrix-
free model-based algorithms, which provide high-quality
reconstruction in case of annular apertures without spiders.
Unfortunately, they run into problems when dealing with sensor
data (partially) shaded by spider legs. In end-to-end simulations,
we observe in this case random uncontrolled segment pistons in
the residuals. For the high-contrast large-scale AO systems in
design, a combination of the advantages of both reconstructor
types, i.e., the ability to reconstruct wavefronts with high pre-
cision and speed in the presence of spiders, is highly desirable.

In the second part of this paper, we presented a solution, the
so-called split approach, which combines the advantages of the
interaction-matrix-based and free methods and provides a high-
quality wavefront reconstruction in the presence of spiders with
little computational demand. The solution is based on the idea to
split the reconstruction of pistons on the pupil segments from the
reconstruction of higher-order modes (frequencies). For the

latter part, one can use any of the available fast model-based
algorithms. Especially, beneficial here is the P-CuReD, which
has the smallest computational load and also provides the
best reconstruction quality in case no spider legs shade the pupil.

For segment piston reconstruction, we presented two
approaches. One of them requires the registration and inversion
of a full interaction matrix. However, the control matrix is after-
ward projected to the space of segment pistons only, hence
reduced in size. Another one uses a small size interaction matrix
instead, which is registered in the basis of segment pistons. The
resulting control matrices are in both methods of small size and
the direct segment piston reconstruction step has a linear
complexity.

Combined with the P-CuReD used for reconstruction of
higher-order modes, the number of computations required for
the complete wavefront reconstruction scales linearly with the
number of controlled actuators. This represents a big advantage
of the split approach compared to the usual interaction-matrix-
based MVM, whose complexity scales quadratically with the
number of actuators. Although MVM approaches may still
be computationally doable for relatively large-scale systems
like METIS having a 74 × 74 pyramid sensor in 2026, they
are hardly feasible for extremely large systems like XAO having
200 × 200 subapertures and a corresponding number of actua-
tors to be controlled in real time. The presented split approach
causes, in contrast, no difficulties for the real-time implementa-
tion even on the largest AO systems of ELT-sized telescopes.

Moreover, the split approach makes existing model-based
phase reconstruction algorithms developed for nonsegmented
pupils suitable for wavefront control in the presence of telescope
spiders. Alternatively, another idea to overcome the effects of
pupil fragmentation with the model-based algorithms consists
in an appropriate adjustment of the underlying forward models.
A corresponding extension of the algorithms will be necessary
and may allow for a stable control of segmented piston offsets
without using interaction-matrix-based attempts. The question
whether such an extension is possible and for which methods
it is applicable needs further investigations.

The analysis of the split approach was done in the context of
the instrument METIS for sensing in the K-band. Further inves-
tigations about DSPRs using pyramid sensors in different sens-
ing wavelengths are of high interest for several instruments in
development for ELTs and therefore planned future work.
Although, the theory of the split approach is nonspecific to
the instrument and therefore applicable to any AO system,
the wavefront reconstruction may possibly suffer from phase
ambiguity or other wavelength dependent effects of the pyramid
sensor.
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