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Abstract. NASA is studying a possible starshade flying in formation with the Nancy Grace
Roman Space Telescope (Roman). The starshade would perform weeks-long translational
retargeting maneuvers between target stars. A retargeting architecture that is based on chemical
propulsion and does not require ground tracking or interactions with the telescope during the
retargeting cruise is introduced. Feasibility is demonstrated through a covariance analysis of
the starshade-telescope relative position over several weeks using realistic sensor and actuator
assumptions. Performance is sufficient for Roman to reacquire the starshade after retargeting,
and the architecture is shown to be applicable to other mission concepts such as the Habitable
Exoplanet Observatory (HabEx). Results are verified through high-fidelity simulations, and driv-
ing sources of uncertainty are identified to confirm the robustness of the approach. © 2021 Society
of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.7.2.021206]
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1 Introduction

1.1 Starshades

Starshades – large, precisely shaped, external occulters flying in formation with a telescope –

offer a path to direct observation and spectroscopic characterization of Earth-like exoplanets (e.g.
Refs. 1–4). Historical perspectives on starshades are included in Refs. 3 and 5. In the 2000s,
flagship-class starshade missions were proposed (e.g., Refs. 6 and 7). In this decade, NASA
starshade studies included both a Probe-class mission with a 20- to 30-m-diameter starshade
that could rendezvous and operate with the Nancy Grace Roman Space Telescope (“Roman,”
see Refs. 1, 8, and 9) and a flagship-class mission, the Habitable Exoplanet Observatory
(“HabEx,” see Refs. 10 and 11) with a 52-m-diameter starshade.

A proposed operational concept for these missions, similar to Refs. 9 and 12–15 and shown in
Fig. 1, would proceed as follows. First, the space telescope and the starshade spacecraft
are inserted in similar quasi-halo orbits around the Second Sun-Earth Lagrange point (SEL2)
using ground-based orbit determination (OD). After this initialization phase, a series of obser-
vations is performed by cycling through acquisition, science, and retargeting phases. The purpose
of the acquisition phase is to align the starshade with respect to the telescope-star axis with suf-
ficient precision to begin science observations. It includes handovers between three coboresighted
telescope sensors with an increasingly fine resolution and narrow field of view (FOV): a coarse
sensor (CS), an intermediate sensor (IS), and a fine sensor (FS). During the science phase, the two
spacecraft are separated by tens of thousands of kilometers. Using FS measurements, the star-
shade uses its thrusters to maintain its meter-level alignment between the telescope and the star,
for instance, as demonstrated in Refs. 12 and 15. At the end of the science phase, the starshade
performs a retargeting maneuver to roughly position itself at the desired starshade-telescope
distance in line with the next target star, as shown in Fig. 2. A new acquisition phase begins
once the telescope reacquires the starshade with the CS at the end of of the retargeting cruise.
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1.2 Starshade Retargeting

In this article, a guidance, navigation, and control achitecture is proposed for the retargeting
phase, and its feasibility is demonstrated. For current starshade concepts (e.g., Refs. 9 and 11),
the retargeting cruise can last several weeks, with initial Δvs as large as tens of meters-
per-second. At the end of the cruise, position control of the starshade relative to the telescope

Fig. 1 Overview of a proposed concept of operations (not to scale). Figure adapted from Ref. 12.

Fig. 2 Earth-relative visualization of the nominal scenario for lateral retargeting (defined in
Sec. 4.3). Locations shown at 3-day intervals with initial locations in green and final in red. Right
inset: visualization of initial relative position error δρ0. Left inset: visualization of final retargeting
error δρf (see Sec 4.4). Point clouds show Monte Carlo results; ellipsoids and projections onto
coordinate planes show 3σ covariance analysis predictions. The following scalings were applied
to aid visualization: Earth-Moon distance increased 20×; Earth and Moon diameters increased
300×; and telescope-starshade distance increased 100×.
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must be sufficiently precise to ensure the starshade can be reacquired by the telescope’s CS.
The CS must also have sufficient resolution to hand over to the IS with its arcsecond-level FOV.
As a result, a key constraint is that retargeting must be consistent with a degree-level CS FOV.

Apart from preliminary analyses such as Refs. 16 and 17, most previous approaches for
retargeting are based on starshades with solar-electric propulsion (SEP) in an effort to reduce
propellant mass and increase mission duration (e.g., Refs. 7, 8, 18 to 22). However, chemical
propulsion (CP) is still likely required for starshade science as light emitted by continuously
firing electric thrusters or sunlight reflected off their plumes could degrade observations.
Relying on SEP for retargeting is therefore likely to lead to spacecraft designs with dual pro-
pulsion systems. In addition, high-power SEP systems require the starshade spacecraft to be
fitted with significantly larger solar panels than for a CP-only design. Finally, measuring and
correcting the low thrust of SEP with commercial off-the-shelf (COTS) on-board accelerometers
with sufficient precision for reacquisition could be challenging. It might instead require
comparatively expensive science-grade accelerometers or intermittent measurements of the star-
shade position from the ground, as in the Telescope for Habitable Exoplanets and Interstellar/
Intergalactic Astronomy flagship study (THEIA, e.g., see Ref. 7). Alternatively, telescope oper-
ations could be interrupted at regular intervals during the cruise to acquire the starshade and
measure its relative position, for instance, as in the Exo-S study (Ref. 8) or the New Worlds
Observer concept (NWO, e.g., see Ref. 23).

1.3 Proposed Retargeting Architecture

In this article, a relatively less complex and inexpensive retargeting architecture is proposed,
analyzed, and shown to be feasible. It consists of using only CP and a set of COTS acceler-
ometers to perform an actively controlled retargeting Δv maneuver, followed by a passive cruise
until reacquisition with the CS. Using an array of COTS accelerometers enables precise knowl-
edge and therefore execution of the initial retargeting Δv. No additional SEP system is needed.
Although a CP-only design is expected to have a higher propellant mass, this increase is partially
offset by avoiding the need to carry an SEP system and the solar arrays to provide power for it
(e.g., see Ref. 11). In addition, no science-grade accelerometers or intermittent sensor contacts
from either the ground or the telescope are needed. Finally, the telescope does not need to per-
form a search with the CS at the end of the cruise: it is able to remain pointed at the star while its
CS reacquires a starshade laser beacon (see Sec. 2 and, e.g., Ref. 14 for further details regarding
relative bearing sensor concepts). These operational features could significantly reduce mission
cost and complexity.

The feasibility of the proposed concept is demonstrated with a computationally efficient
covariance propagation framework. This analytical approach evaluates the statistics of the retar-
geting error as well as its sensitivity to both nominal model parameters and uncertainty assump-
tions. Further insights into the error growth mechanisms are also provided, confirming the
robustness of the retargeting architecture. Similar covariance analyses have been used in many
prior studies for applications such as mission planning (Ref. 24), navigation (Refs. 25 and 26),
descent and landing (Refs. 27 and 28), powered ascent (Ref. 29), and rendezvous and proximity
operations (Refs. 30 and 31). In this article, the analysis is applied to both Roman-starshade and
HabEx-starshade scenarios as representative examples. The results of these analyses show that in
both cases a CS with a degree-level FOV is sufficient for reacquisition when using this CP-only
retargeting architecture.

This article is structured as follows. In Sec. 2, based on the CP-only retargeting architecture
and study of a possible starshade for Roman, a representative concept of operations (ConOps) for
retargeting is described in detail. In Sec. 3, the covariance propagation framework is introduced.
In Sec. 4, the framework is applied to the proposed retargeting concept for a Roman-starshade
scenario, and the predictions are verified with Monte Carlo simulations for two stressing refer-
ence trajectories. A preliminary assessment is also conducted for a HabEx-starshade scenario.
In Sec. 5, the error growth mechanisms are analyzed, and sensitivities to both nominal model
parameters and uncertainty assumptions are computed. Finally, the conclusions of the work are
given in Sec. 6. Some of the results presented in this article were also published in conference
proceedings (Ref. 32).
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2 Representative ConOps for CP-Only Architecture

In this section, a representative ConOps for CP-only retargeting, believed to be viable for star-
shades operating with Roman and HabEx, is described in detail. The main steps are summarized
in Fig. 3, and key actuators and sensors are listed in Tables 1 and 2.

2.1 Retargeting Initiation (tsci ⩽ t ⩽ t0)

At the end of the science phase (t ¼ tsci), the two spacecraft are separated by tens of thousands of
kilometers. The telescope has ended its starshade science observations and is pointing to the
target star. Its absolute position is tracked at regular time intervals from the ground, and it
performs monthly trajectory correction maneuvers (TCMs) to maintain its trajectory along its
quasi-halo orbit. Starshade TCMs, performed with the starshade reaction control system (RCS)
thrusters, are nominally identical to and synchronized with the telescope TCMs.

The starshade is spin-stabilized during the science phase and remains spin-stabilized
throughout the retargeting phase (although the approach described here is expected to also apply
to a three-axis stabilized starshade). Internal disturbances, solar radiation pressure (SRP) torque,
and gravity gradient torques are sufficiently small not to require pointing maintenance

Fig. 3 Retargeting timeline. The covariance analysis focuses on the retargeting cruise, shown
in bold.

Table 1 Representative starshade actuators and sensors used during retargeting.

Hardware Function Key characteristics

Main thrusters Main retargeting burns Aligned with axis of symmetry. Performance
similar to Aerojet Rocketdyne R-6D.33

RCS thrusters Other translational burns and
slews

6 degree-of-freedom (DOF) control. Similar
performance to main thrusters.

Array of COTS
accelerometers

3-DOF acceleration sensing Used while main or RCS thrusters are firing.
Performance similar to Honeywell QA3000.34

Stellar reference units Attitude sensing Performance similar to Leonardo A-STR.35

S-band system Longitudinal position sensing 500-m 3σ measurement accuracy. Also used
for interspacecraft communications.

Laser beacon Guiding signal for telescope
sensors

Aligned with axis of symmetry. Degree-level
beam width, sufficient power for reacquisition.

Table 2 Representative telescope actuators and sensors used during retargeting.

Hardware Function Key characteristics

CS Starshade reacquisition Custom, degree-level FOV camera. Aligned with
telescope boresight. Also lateral position sensor
for coarse acquisition phase.

S-band system Longitudinal position sensing 500-m 3σ measurement accuracy. Also used for
interspacecraft communications.
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maneuvers during the retargeting cruise. The position of the starshade along the telescope-star
axis, referred to as the relative longitudinal position, is measured by radio frequency ranging,
using S-band systems installed on the two spacecraft. The FS is used to measure the relative
lateral position (i.e., across the telescope-star axis) during the science phase and is still active at
t ¼ tsci (e.g., see Refs. 12 and 15).

In this article, slews refer to pure spacecraft rotations. Between t ¼ tsci and t ¼ t0, the tele-
scope slews with its reaction wheels and begins performing nonstarshade science. The starshade
slews using its RCS thrusters to point its main thrusters in the retargeting burn direction, while
remaining spin-stabilized and interrupting S-band and FS measurements. The main retargeting
burn is performed with the starshade main thrusters to improve fuel efficiency by avoiding cosine
losses. RCS thrusters and accelerometers are used in a closed loop during the main burn to reduce
the execution error. A second slew is then performed to orient the starshade in the desired direction
for the cruise. Finally, an open-loop burn is performed with RCS thrusters to correct remaining
residuals measured with the accelerometers during the two slews and the main retargeting burn.
Detailed modeling of these retargeting initiation maneuvers is included in Appendix A.

2.2 Cruise (t0 ⩽ t ⩽ t f )

At t ¼ t0, the telescope is performing nonstarshade science and the starshade is spin-stabilized
and pointing in the chosen cruise direction. A maximum cruise duration of 3 weeks is considered
representative, and some results are given for a cruise of up to 4 weeks. Nominally, no starshade
thruster firings occur during the cruise except to potentially match a telescope TCM. For Roman,
telescope reaction wheel desaturation maneuvers (desats) occur every 4 days (subject to change).

To prepare for reacquisition, the telescope ends nonstarshade science and slews with reaction
wheels to point to the new starshade science target star. It then sets up its optical configuration for
starshade acquisition and science. This procedure is done sufficiently early in the cruise to allow
for thermal settling before reacquisition.

2.3 Reacquisition (t f ⩽ t ⩽ tacq)

At t ¼ tf, the telescope is pointing to the new target star. When the starshade reaches the desired
position relative to the telescope to initiate reacquisition, it slews using RCS thrusters toward the
deceleration burn direction and uses its main thrusters to perform its main deceleration burn. It then
slews with RCS thrusters to point to the target star, thus reestablishing S-band communications and
relative longitudinal position sensing. It also turns on its laser beacon to enable reacquisition.

The telescope turns on the CS, which finds both the target star and the starshade laser beacon.
At t ¼ tacq, the starshade starts receiving relative bearing measurements from the CS, and the
coarse acquisition phase begins.

3 Covariance Analysis Framework

In this section, the covariance propagation framework used to evaluate the feasibility of the
proposed CP-only retargeting architecture is described.

3.1 Notation and Problem Definition

In the following paragraphs, the problem definition is stated and key notation, shown in Figure 4,
is introduced. Initial time t ¼ t0 corresponds to the start of the cruise and is indicated with a “0”
subscript. During reacquisition (tf ⩽ t ⩽ tacq), the maneuvers that the starshade performs take
place shortly before the CS finds the starshade beacon. Their influence on the relative position
dispersion is therefore small. As a result, the final time t ¼ tf corresponds to the end of the cruise
phase (t ¼ tf) and is indicated with an “f” subscript.

The telescope and starshade absolute positions, expressed in an inertial reference frame, are
rðtÞ and sðtÞ, respectively, where t represents time. The relative position of the starshade with
respect to the telescope is ρðtÞ ¼ sðtÞ − rðtÞ.
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Scalars such as vector norms are denoted in roman italic font; for instance, ρ ¼ kρk. Unit
vectors are denoted with a “hat”; for instance, ρ̂ ¼ ρ∕ρ. Time derivatives are indicated with a
“dot”; for instance, _ρ ¼ dρ∕dt. The matrix I is an identity matrix, and the matrix 0n×m is an ðn ×
mÞ zero matrix. The subscript is omitted for square matrices (n ¼ m).

The nominal value of a variable corresponds to its current best estimate (CBE). In some
cases, the nominal values are obtained from a combination of measurements, estimation, and
propagation; in others, they are known by design (e.g., commanded values of Δvs). The error in
a variable’s value, denoted with a “δ,” is the difference between the true value, denoted with an
asterisk, and the nominal value of the variable. For instance, the relative position error is
δρ ¼ ρ� − ρ. As such, the true values are random variables, and unless specified otherwise, their
expected value is equal to their nominal value; for instance, Eðρ�Þ ¼ ρ. Covariance matrices thus
represent the spread of possible true values about the nominal value. For example, the covariance
matrix of the relative position error is Covðδρ; δρÞ ¼ CovðδρÞ ¼ Eðδρδρ†Þ, where † is the
Hermitian transpose operation.

For the proposed architecture to be feasible, it is not sufficient to bound the final relative posi-
tion knowledge error: the final retargeting error itself must be sufficiently small. In addition, for
infinitely far target stars, the ability to successfully reacquire only depends on the relative position
error at the end of the cruise δρf. It does not depend on the final absolute position of the telescope
δrf and starshade δsf explicitly. However, they must be considered in the analysis because the
growth of δρ during the cruise does depend on the absolute position errors, as discussed below.

3.2 Sources of Uncertainty

In this section, the sources of uncertainty included in the analysis are described. At the start of the
cruise, when t ¼ t0, the errors in the initial telescope, starshade, and relative states are ½δr†0; δ_r†0�†,
½δs†0; δ_s†0�†, and ½δρ†0; δ_ρ†0�†. respectively. First, the initial state errors are subject to the guidance
error. This error source appears because the commanded retargeting burn is designed based on
the nominal system state at the end of the science phase (i.e., when t ¼ tsci). However, because of
the knowledge error in the true absolute and relative states at t ¼ tsci, the designed burn is not
perfect in general. Even in the absence of all other sources of uncertainty described in this sec-
tion, there would still be a nonzero guidance error. Second, the initial state errors are affected by

Fig. 4 Illustration of the retargeting phase. Top: nominal cruise; bottom: reacquisition (not to scale).
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residuals from the main starshade retargeting burn. Third, a TCM is conservatively assumed to
occur at t ¼ t0 to maximize the propagation time of associated burn residuals. Additional TCMs
could also be addressed, but they are only expected at a monthly cadence.

During the cruise, when t0 ⩽ t ⩽ tf, these initial state errors propagate through SEL2 gravity
gradients. In addition, the growth of telescope, starshade, and relative state errors, given by
½δr†ðtÞ; δ_r†ðtÞ�†, ½δs†ðtÞ; δ_s†ðtÞ�†, and ½δρ†ðtÞ; δ_ρ†ðtÞ�†, respectively, is further exacerbated by
residuals from telescope desats and uncertainty in SRP acceleration. The relative SRP acceler-
ation uncertainty is δρ̈SRP ¼ δs̈SRP − δr̈SRP.

All sources of uncertainty that contribute to the final relative position dispersion are listed in
Table 3 and shown in Fig. 5. The numerical values in the table are representative of a Roman-
starshade scenario and are discussed in Sec. 4.

Table 3 Retargeting sources of uncertainty.

Source of uncertainty
Error
symbol

Standard
deviation
symbol

Standard
deviation
value

Relative position error at t ¼ tsci δρsci σδρ;sci 167 m

Telescope absolute position error at t ¼ tsci δrsci σδr ;sci 33.3 km

Relative velocity error at t ¼ t sci δ_ρsci σδ_ρ;sci 33.3 mm∕s

Telescope absolute velocity error at t ¼ t sci δ_rsci σδ_r ;sci 33.3 mm∕s

Residuals from starshade TCM δ _sTCM σδ _s;TCM 6.0 mm∕s

Residuals from telescope TCM δ_rTCM σδ_r ;TCM 2.33 mm∕s

Residuals from main starshade retargeting burns/slews δ _sret σδ _s;ret 40 mm∕s

Residuals from each telescope desat δ_rdesat σδ_r ;desat 1.33 mm∕s

Uncertainty in starshade SRP acceleration δs̈SRP σδs̈;SRP 40 nm∕s2

Uncertainty in telescope SRP acceleration δr̈SRP σδr̈ ;SRP 5 nm∕s2

Fig. 5 Illustration of retargeting sources of uncertainty. Thin lines: position vectors; thick lines:
velocity vectors; very thick lines: acceleration vectors; dashed lines: error position vectors; blue:
telescope quantities; purple: starshade quantities; black: relative quantities; gray: nominal quan-
tities (not to scale).
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3.3 Error Dynamics Formulation

Having listed the relevant sources of uncertainty, the linearized error dynamics are derived in
Sec. 3.4 using the approach described in this section. In particular, three distinct features of the
error dynamics formulation are highlighted.

The first feature is that error dynamics are linearized about given absolute trajectories for both
the telescope and the starshade, rðtÞ and sðtÞ, respectively. Note that a given relative trajectory for
the starshade, ρðtÞ, such that sðtÞ ¼ rðtÞ þ ρðtÞ could also be used. An absolute trajectory is
chosen here for clarity and convenience. Whereas absolute position errors of 100s of kilometers
are expected, SEL2 is more than 1,000,000 km from the Earth and Moon. For both spacecraft,
the choice to linearize about rðtÞ and sðtÞ is therefore justified, and the validity of the approach is
further confirmed via Monte Carlo simulations in Sec. 4. The major advantage of this approach is
that the accuracy is effectively independent of the telescope–starshade distance. As a result, this
covariance propagation framework is broadly applicable for retargeting analyses. An alternative
would be to linearize both the telescope true position and starshade true position about the tele-
scope reference trajectory as in Ref. 36. However, the telescope–starshade distance can be close
to a 100,000 km, so the linearization errors may not be negligible in this case.

Thus, starting from the nominal initial state vectors (at t ¼ t0), telescope and starshade abso-
lute positions rðtÞ and sðtÞ are propagated and stored for t0 ⩽ t ⩽ tf using a fixed time-step fifth-
order Runge–Kutta ordinary differential equation solver. This solver was validated against
MONTE simulations37 (MONTE is the JPL’s high-fidelity mission design tool, validated opera-
tionally on several NASA deep space missions, including Cassini, Mars Science Laboratory, and
Juno) and used in Ref. 12. This MATLAB®-based environment propagates the position of a
telescope and a starshade spacecraft in three-dimensional space, under the influence of the grav-
ity from the Earth, Sun, Moon, and SRP. Rather than exactly matching a particular Design
Reference Mission (DRM), trajectories representative of a Roman-starshade scenario (Ref. 9)
that stress the feasibility of reacquisition are sought. The chosen reference trajectories are de-
scribed and discussed in Sec. 4.3.

The second feature is that after linearization about rðtÞ and sðtÞ, the equations are reformu-
lated to be explicit in the dynamics of the relative state error, δρ. This reformulation has two
objectives. First, the final relative retargeting error δρf is what determines the feasibility of the
retargeting architecture. Therefore, it is sensible to propagate its covariance directly rather than
that of δs. Second, integrating δρ directly instead of δs takes advantage of the fact that at t ¼ tsci,
the relative position errors (∼0.1 km) are orders of magnitude smaller than the absolute position
errors (∼100 km).

The final feature is that the chosen formulation shows that the growth in δρ is relatively
insensitive to the absolute telescope position errors. Specifically, δr only appears as a second-
order error in the gravity-gradient: compare the absolute position errors of 100s of kilometers
with a distance of more than 1,000,000 km from SEL2 to the Earth and Moon.

3.4 Error Dynamics Derivation

The dynamics of the telescope position error δrðtÞ, once linearized about its reference trajectory
rðtÞ, can be shown to be (e.g., Ref. 38):

EQ-TARGET;temp:intralink-;e001;116;213δr̈ ¼
X

bodies i

−μi
r3i

ðI − 3r̂ir̂i Þδrþ δr̈SRP ¼ Ψrδrþ δr̈SRP; (1)

where δr̈SRP is the telescope SRP acceleration error and riðtÞ is the vector from the i’th gravi-
tational body with gravitational constant μi to the telescope, computed from the stored reference
absolute trajectory rðtÞ. An analogous equation is written for the starshade, leading to
δs̈ ¼ Ψsδsþ δs̈SRP. The linearized relative error dynamics are thus

EQ-TARGET;temp:intralink-;e002;116;127δρ̈ ¼ δs̈ − δr̈ ¼ ðΨs − ΨrÞδrþΨsδρþ δρ̈SRP: (2)

Although the dependence on t is not shown explicitly in the equations above for readability,
ΨrðtÞ and ΨsðtÞ are time-varying matrices. They are functions of the absolute nominal positions
at time t of the two spacecraft as they travel along their reference trajectories.
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In addition, the telescope performs desats at fixed time intervals Δtdesat. The residuals from
these maneuvers are modeled as acceleration error impulses, leading to the following state-space
system:

EQ-TARGET;temp:intralink-;e003;116;699

2
6666666664

δ_ρ

δ_r

δρ̈

δr̈

δρSRP
δrSRP

3
7777777775
¼

2
64

0 I 0

AΨ 0 I

0 0 0

3
75

2
6666666664

δρ

δr

δ_ρ

δ_r

δρ̈SRP
δr̈SRP

3
7777777775
þ

2
64

06×3
Gdesat

06×3

3
75δ_rdesat; (3)

where

EQ-TARGET;temp:intralink-;e004;116;576AΨ ¼
�
Ψs ðΨs − ΨrÞ
0 Ψr

�
; Gdesat ¼

�
I
I

�
: (4)

In Eq. (3), δρ̈SRP and δr̈SRP remain constant. These SRP uncertainty terms are included in the
state rather than added as an external input for mathematical convenience. Equation (3) is in the
standard continuous linear time varying state-space form:

EQ-TARGET;temp:intralink-;e005;116;495

_xðtÞ ¼ AðtÞxðtÞ þ GwðtÞ; (5)

where xðtÞ is the state vector, wðtÞ ¼ δ_rdesatðtÞ is the state disturbance vector, AðtÞ is the state
matrix, and G is the state disturbance matrix. The disturbances δ_rdesatðtÞ are trains of vector
impulses taking place at constant time intervals Δtdesat, conservatively starting at t ¼ t0. The
components of each impulse vector in the train are zero-mean normally distributed uncorrelated
random variables, such that the vector covariance matrix is σ2δ_r;desatI.

Once discretized, the dynamics become

EQ-TARGET;temp:intralink-;e006;116;390xkþ1 ¼ Φkxk þ Γwk: (6)

Here, xk is the discretized state vector and Φk ¼ exp½AðtkÞΔt� is the discretized state transition
matrix, where Δt is the time step and tk ¼ kΔt. The discretized state disturbance vector wk is a
train of regularly spaced pulses. The components of each pulse vector in the train are zero-mean
normally distributed uncorrelated random variables, such that the vector covariance matrix is
again σ2δ_r;desatI. Because of the impulsive nature of the inputs, the discretized state disturbance
matrix can be shown to be Γ ¼ G.

3.5 Covariance Propagation

The system output is chosen to be yðtÞ ¼ CxðtÞ ¼ δρðtÞ, where C ¼ ½I; 0 3×15� is the output
matrix. The statistics of the final relative position error are thus given by the final output covari-
ance matrix:

EQ-TARGET;temp:intralink-;e007;116;212Py;f ¼ CovðyfÞ ¼ CPfC†; (7)

where Pf ¼ CovðxfÞ is the covariance matrix of the state at the end of the cruise.
In this study, the following quantity is used to evaluate retargeting performance:

EQ-TARGET;temp:intralink-;e008;116;154σf ¼ ffiffiffiffiffiffiffi
sy1

p
; (8)

where sy1 is the largest singular value of Py;f. Physically, the scalar σf is the length of the largest
semi-major axis of the ellipsoid defined by Py;f (see Fig. 4). Noting that the norm δρf follows a
chi distribution rather than a normal distribution, σf is used to size the CS FOV. For instance, the
analysis predicts that, at t ¼ tf, the starshade will be inside a CS FOVof radius 3σf with 97.1%
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confidence. This confidence value corresponds to the worst-case direction, associated with σf,
and is therefore a lower bound.

Starting from the initial state covariance matrix P0, the final state covariance matrix Pf is
evaluated by propagating the state covariance matrix Pk ¼ CovðxkÞ using

EQ-TARGET;temp:intralink-;e009;116;686Pkþ1 ¼ ΦkPkΦ
†

k þ ΓQkΓ†; (9)

where Qk is the covariance matrix of wk:

EQ-TARGET;temp:intralink-;e010;116;641Qk ¼ CovðwkÞ ¼ σ2desat;kI: (10)

Here, σdesat;k ¼ σδ_r;desat if tk is a multiple of Δtdesat, and σdesat;k ¼ 0 otherwise.
The matrix P0 provides the statistics of the initial state x0, which has the following compo-

nents. Initial absolute state errors are

EQ-TARGET;temp:intralink-;e011;116;571δr0 ¼ δrsci; δ_r0 ¼ δ_rsci þ δ_rTCM; (11)

and initial relative state errors are

EQ-TARGET;temp:intralink-;e012;116;528δρ0 ¼ δρsci; δ_ρ0 ¼ δ_ρsci þ δ_sret þ δ_sTCM − δ_rTCM: (12)

The associated covariance matrices are

EQ-TARGET;temp:intralink-;e013;116;485Covðδr0Þ ¼ σ2δr;sciI; Covðδ_r0Þ ¼ σ2δ_r;sciI þ σ2δ_r;TCMI; (13)

EQ-TARGET;temp:intralink-;e014;116;440Covðδρ0Þ ¼ σ2δρ;sciI; Covðδ_ρ0Þ ¼ σ2δ_ρ;sciI þ σ2δ_s;retI þ σ2δ_s;TCMI þ σ2δ_r;TCMI; (14)

EQ-TARGET;temp:intralink-;e015;116;415Covðδρ0; δr0Þ ¼ 0; Covðδ_ρ0; δ_r0Þ ¼ −σ2δ_r;TCMI: (15)

The covariance matrices of SRP uncertainties are

EQ-TARGET;temp:intralink-;e016;116;391Covðδr̈SRP;0Þ ¼−Covðδρ̈SRP;0;δr̈SRP;0Þ ¼ σ2δr̈;SRPI; Covðδρ̈SRP;0Þ ¼ σ2δs̈;SRPIþ σ2δr̈;SRPI: (16)

The resulting initial state covariance matrix P0 is

EQ-TARGET;temp:intralink-;e017;116;346P0 ¼

2
66666666664

σ2δρ;sciI 0 0 0 0 0

0 σ2δr;sciI 0 0 0 0

0 0 Covðδ_ρ0Þ −σ2δ_r;TCMI 0 0

0 0 −σ2δ_r;TCMI Covðδ_r0Þ 0 0

0 0 0 0 σ2δρ̈;SRPI −σ2δr̈;SRPI

0 0 0 0 −σ2δr̈;SRPI σ2δr̈;SRPI

3
77777777775
: (17)

4 Covariance Analysis Results

In this section, the framework introduced above is applied to a Roman-starshade scenario.
Assumptions leading to the uncertainty values in Table 3 and to the choice of reference trajec-
tories are first described. Corresponding covariance analysis results, including the verification of
the framework accuracy through Monte Carlo simulations, are then discussed. Finally, a pre-
liminary assessment is conducted for a HabEx-starshade scenario.

4.1 Conservatism in Assumptions

This work focuses on introducing a covariance propagation framework for starshade retargeting
that is capable of authoritatively evaluating retargeting error statistics. It also shows that, for
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stressing and representative parameters, including actuator and sensor performance, the pro-
posed retargeting architecture is feasible.

One of the conservative assumptions made in this article is that, even though many sources
of uncertainty are anisotropic (for instance, the retargeting burn execution error, discussed in
Appendix A), the uncertainty associated with the worst-case direction is applied to every axis.
Some of the nominal parameters chosen in the sections below are also more conservative than
expected for either a Roman or a HabEx starshade scenario. Finally, σf is conservatively used as
the main retargeting performance metric.

These simplifications reduce the number of parameters in the analysis, which allows for making
bounding arguments about the retargeting error and generates valuable intuition about the system.
For any specific DRM, however, the covariance propagation tool is able to incorporate the direc-
tionality associated with the initial conditions of each retargeting burn in the sequence and provide
tailored retargeting performance estimates. This step will be addressed as part of future work.

4.2 Selection of Uncertainty Parameters

The standard deviations of the science-phase relative position σδρ;sci and velocity σδ_ρ;sci in Table 3
are based on the expected science sensing performance for a starshade operating with Roman
(e.g., Refs. 9, 12, and 15). The science-phase relative lateral sensing performance is tens of
centimeters in position and millimeters per second in velocity. By contrast, the relative longi-
tudinal sensing performance is hundreds of meters in position and centimeters per second in
velocity. As discussed in Sec. 4.1, the more conservative longitudinal values are used for all axes.

Based on communications with the Roman navigation team about the design of the telescope
and its operations at the time of writing, the conservative estimates of σδr;sci, σδ_r;sci, σδ_r;TCM,
σδ_r;desat, and σδr̈;SRP were generated (see Table 3). These values do not explicitly reflect
Roman telescope requirements and are subject to change.

In this analysis, the residuals from each desat are assumed to be uncorrelated. In practice,
some correlation might exist if the telescope pointing direction remains fixed while performing
nonstarshade-related science for a large portion of the cruise. The execution error corresponding
to the starshade retargeting burns and slews δ_sret is discussed in detail and evaluated in Appendix
A. The starshade TCM residual uncertainty is estimated using the open-loop performance of the
RCS thrusters, also discussed in Appendix A.

To select σδs̈;SRP, the following model for the SRP acceleration due to a Sun-facing
specularly reflective plate of surface area error δSSRP is used (e.g., Refs. 39 and 40):
δr̈SRP ¼ ½2ϕδSSRP∕ðmcÞ�r̂⊙. Here, r̂⊙ is the unit vector pointing from the Sun to the spacecraft,
ϕ is the solar flux at a given distance between the spacecraft and the Sun, m is the spacecraft
mass, and c is the speed of light in vacuum. As ϕ, m, and c are approximately constant during
the cruise, δSSRP is the only independent variable. Its standard deviation, denoted σS , thus
provides an intuitive means of estimating representative SRP uncertainty magnitudes.

In this analysis, the cruise is performed with the starshade facing the Sun. In practice, the
cruise attitude would be determined by a system trade including, e.g., power, thermal, SRP,
micrometeorites, and communications considerations. For a Roman starshade (Ref. 9), the full
starshade frontal area is 335 m2. Despite its size, the starshade frontal area is precisely charac-
terized for science purposes. Extensive in-orbit calibrations may also be performed on the
deployed starshade during commissioning as it travels from Earth to SEL2. Based on these con-
siderations, the chosen value of σδs̈;SRP ¼ 40 nm∕s2 corresponds to a nominal standard deviation
of 0.5% of the total frontal area. This value of σS is conservative: for non-Sun-facing starshade
cruise attitudes, it represents a larger percentage of the total Sun-facing area.

4.3 Selection of Reference Trajectories

The linear dynamics operators Ψs and Ψr in Eq. (4) are functions of the reference trajectories
as they depend on the distances between the two spacecraft and each gravitational body at
every point during the cruise. In this section, two full retargeting trajectories designed to be
representative and stress the feasibility of the proposed retargeting architecture are presented.
The sensitivity of the retargeting error to the nominal trajectory parameters is further discussed in
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Sec. 5. Several methods exist for optimizing DRMs and starshade trajectories with given initial
and final conditions (e.g., Refs. 41 to 43). Because this work focuses on feasibility rather than on
a specific DRM, stressing initial and desired final conditions are selected and a retargeting burn
that approximately satisfies these boundary conditions is found by trial-and-error.

For both reference trajectories, starting from a representative Roman trajectory provided by
the Roman navigation team, the initial telescope–Earth distance is minimized (r�;0 close to
1200 Mm), and the starshade is initially positioned along the telescope–Earth axis, as close to
Earth as possible: ρ0 ¼ 37.7 Mm (maximum distance mentioned in Ref. 9) and θ� ¼ 0°. The
Earth formation angle θ� is defined as the angle between −r� and ρ (see Fig. 4). Although
neither a Roman nor a HabEx scenario would allow for θ� ¼ 0°, the relative position vector
has a secondary influence on the error dynamics, as discussed in Sec. 5.2.2. For this reason,
θ� ¼ 0° is chosen for conservatism and simplicity (see Sec. 4.1). Both retargeting cruises last
3 weeks (again, consistent with Ref. 9), and both trajectories remain approximately in the plane
defined by the telescope position, the Earth position, and the telescope velocity vector relative to
Earth over the entire cruise.

The first trajectory is a longitudinal retargeting maneuver. It is designed so that the inertial
direction of the formation is approximately unchanged at the end of the cruise ρ̂f ≈ ρ̂0 and the
final telescope–starshade distance is ρf ≈ 21.3 Mm. This trajectory is chosen because minimiz-
ing the final telescope–starshade distance leads to the most stringent retargeting error require-
ment (in kilometers) for a given CS angular FOV. The magnitude of this burn is 19.5 m∕s. The
starshade trajectory relative to the telescope is shown in Fig. 6(a).

The second trajectory is a lateral retargeting maneuver. It is designed to lead to an ∼40°
retargeting angle between ρ̂0 and ρ̂f, while keeping the initial and final longitudinal distance
approximately constant: ρf ≈ ρ0 ¼ 37.7 Mm. This trajectory is chosen because large values
of ρ increase the retargeting error, as shown in Secs. 5.2.2 and 5.2.3. The magnitude of this
burn is 20 m∕s. The starshade trajectory relative to the telescope is shown in Fig. 6(b), and both
the telescope and starshade trajectories relative to Earth are shown in Fig. 2.

4.4 Results

Figure 7(a) shows the evolution of σf as a function of the cruise duration for the two time-varying
reference trajectories. It also compares them with the bounding time-invariant system defined in
Sec. 5.2.4. As expected, both reference trajectories lead to slightly smaller final retargeting errors

(a) (b)

Fig. 6 Reference retargeting trajectories relative to telescope position. (a) Longitudinal retargeting
maneuver. (b) Lateral retargeting maneuver.
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than those of the bounding model. In addition, the value of σf for the two reference trajectories is
almost identical for all cruise durations. In Sec. 5, it is shown that ρðtÞ does not have a significant
effect on the error dynamics. This finding is consistent with Fig. 7(a), in which the only difference
between the longitudinal and lateral retargeting maneuvers is the evolution of ρðtÞ during the cruise.

These covariance propagation predictions were also verified by running 5000 Monte Carlo
simulations for each trajectory. These simulations use the high-fidelity nonlinear solver
described in Sec. 3.4 to propagate the telescope and starshade absolute positions. In the inset
of Fig. 2, the cloud of δρf vectors computed with Monte Carlo simulations for lateral retargeting
is compared with the 3σ retargeting error ellipsoid predicted by the covariance analysis. The
value of δρf as a function of tf is shown for a subset of the longitudinal-retargeting-trajectory
simulations in Fig. 7(a). The difference between the σf value predicted by the covariance analy-
sis and the σf value computed from the Monte Carlo sample covariance matrix is shown in
Fig. 7(b) for the two trajectories. It is found to remain within 3% for all tf values in both cases.

Based on these results, a CS FOV of �1.17° and �0.66° would be required to guarantee
successful reacquisition at a 3σf level at the end of the longitudinal and lateral retargeting cruises,
respectively. As mentioned in Sec. 4.1, however, the conservative combinations of anisotropic
sources of uncertainty were considered in the analysis, and the choice of nominal parameters and
trajectories do not conform to a specific DRM. For instance, no longitudinal retargeting maneu-
vers are expected in the Starshade Rendezvous Probe study (Ref. 9). Nonetheless, the results
presented here show that a CS with an FOV under 2° would be sufficient to enable successful
retargeting even with these conservative assumptions.

4.5 Application to HabEx-Starshade Scenario

Going further, the covariance propagation framework is applied to a HabEx-starshade scenario,
using the bounding model from Sec. 5.2.4 for simplicity. As HabEx would also be flying in a
quasi-halo orbit near SEL2, the Roman nominal trajectory is maintained. Based on Ref. 11, the
nominal telescope–starshade distance is increased to 76 Mm. A retargeting cruise duration of
30 days is considered. The starshade SRP uncertainty is increased by a factor of 4 to reflect the
fact that the HabEx starshade would have a 52-m diameter rather than a 26-m diameter. HabEx
retargeting burns are also larger, and a bounding value of 100 m∕s is considered. For a mass of
5230 kg and a main thruster force of 445 N, the analysis in Appendix A predicts an execution
error standard deviation of 0.142 m∕s.

(a) (b)

Fig. 7 (a) Retargeting 3σf error as a function of t f for both the longitudinal and the lateral retarget-
ing trajectories, as predicted by the covariance analysis. The evolution of δρðtÞ for the longitudinal
retargeting maneuver is also shown for 100 out of the 5000 Monte Carlo trajectories. The value of
3σf for the bounding model defined in Sec. 5.2.4 is also shown. (b) Comparison between σf values
predicted by the covariance analysis versus Monte Carlo simulations for the two trajectories.
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With these parameters, the predicted 3σf value is 3195 km or 2.41°. This preliminary assess-
ment shows that even for a HabEx-starshade scenario, the proposed retargeting architecture is
feasible with a degree-level CS FOV.

5 Sensitivity Analysis

In this section, the retargeting performance is analyzed with simpler models of the error dynam-
ics. The purpose is to understand analytically the contributions of both nominal parameters and
sources of uncertainty to the overall retargeting error. To do so, time-invariant models of the error
dynamics are constructed with increasing complexity: no gravity-gradients, constant Earth-only
gradient, and constant Earth-Moon-Sun gradients. As discussed in Sec. 5.2.4, this last model,
when combined with a worst-case selection of telescope and starshade positions, produces a
bounding, time-invariant model that provides significant insight into the retargeting error drivers.
These models and their error predictions for a representative scenario are summarized in Table 4.

5.1 Retargeting Error with No Gravity Gradient

Gravity gradients at SEL2 are significantly shallower than in low Earth orbit. The double-
integrator model below is therefore examined to quantify the effect of gravity gradients on the
retargeting error. Denoting variables associated with this gravity-gradient-free model with an
overbar, the state matrix simplifies to

EQ-TARGET;temp:intralink-;e018;116;475A ¼
2
4 0 I 0
0 0 I
0 0 0

3
5; (18)

and the relative position error dynamics simplify to

EQ-TARGET;temp:intralink-;e019;116;404δρf ¼ δρ0 þþδ_ρ0tf þ
Xn
i¼1

½tf − ði − 1ÞΔtdesat�δ_rdesat;i þ
1

2
δρ̈SRPt2f; (19)

where δ_rdesat;i is the i’th desat residual impulse vector. The system dynamics are time invariant
and uncoupled from the telescope absolute dynamics. These equations are also isotropic: errors
grow at the same rate in all directions. The final relative position error is evaluated analytically as

EQ-TARGET;temp:intralink-;e020;116;319σ̄2f ¼ σ2δρ;0 þ σ2δ_ρ;0t
2
f þ

Xn
i¼1

½tf − ði − 1ÞΔtdesat�2σ2δ_r;desat þ
1

4
σ2δρ̈;SRPt

4
f: (20)

Over 3 weeks, the position, velocity, desat, and SRP uncertainty contributions are 167 m, 95 km,
4 km, and 66 km to σf, respectively. The total value of 116 km is therefore 20% smaller than the
145-km value corresponding with the full retargeting trajectories in Sec. 4.4.

Table 4 Summary of models. The σf values shown correspond to a 3-week cruise. For the
first row, σf is approximately equal for the two retargeting trajectories. For the last two rows,
r� ¼ 1;200 Mm, ρ ¼ 37.7 Mm, and θ� ¼ 0° are considered.

Section Key assumptions Ψs σf

Sec. 4.3 Time varying, linearized about full reference
trajectories.

P
i¼�;⊙;☾ð−μi∕s3i ÞðI − 3ŝi ŝ

†

i Þ 145 km

Sec. 5.1 Time invariant, no gravity gradient. 0 116 km

Sec. 5.2.1 Time invariant, only Earth gravity gradient. ð−μ�∕s3�ÞðI − 3ŝ�ŝ
†
�Þ 144 km

Sec. 5.2.4 Time invariant, Sun, Earth, Moon, telescope,
starshade aligned.

ðPi¼�;⊙;☾ − μi∕s3i ÞðI − 3ŝ�ŝ
†
�Þ 152 km
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5.2 Retargeting Error with Constant Gravity Gradient

Next, in Sec. 5.2.1, the effect of Earth’s gravity gradient is added for constant telescope and
starshade positions. As a result, the model produces the instantaneous error growth due to
Earth gravity for the assumed positions. Constant positions keep the model time invariant and
thus amenable to analysis. Further, as discussed in Ref. 12, Earth is the dominant influence on
formation flying dynamics at a telescope-Earth distance of 1200 Mm: it is about six times more
significant than the Sun and over 20 times more significant than the Moon. As the relative domi-
nance of Earth gravity decreases for larger Earth-telescope distances, the effects of the Sun and
the Moon are also included in Sec. 5.2.4.

5.2.1 Earth-gravity-only dynamical system

Variables associated with the Earth-gravity-only constant position model, and to Earth in general,
are denoted with the symbol �. The model is constructed by replacing Ψs and Ψr in Eq. (4) with

EQ-TARGET;temp:intralink-;e021;116;562Ψ�s ¼
−μ�
s3�

ðI − 3ŝ�ŝ
†
�Þ; Ψ�r ¼

−μ�
r3�

ðI − 3r̂�r̂
†
�Þ; (21)

where μ� is the Earth gravitational constant, s� is the Earth-starshade vector, and r� is the Earth-
telescope vector. With no further loss of generality, the inertial frame is centered at Earth, and its
first axis is aligned with the (constant) Earth-telescope vector: r ¼ r� ¼ r�½1;0; 0�† ¼ r�r̂� and
s ¼ s� ¼ r� þ ρ� ¼ s�Rs½1;0; 0�† ¼ s�Rsr̂�, where Rs is a rotation matrix. The final state is
x�f ¼ Φ�fx0, where Φ�f ¼ expðA�tfÞ and A� is time invariant.

5.2.2 Sensitivity to nominal trajectory parameters

It can be shown that there does not exist a unique set of Ψ�s and Ψ�r matrices that maximizes
σf;� for all P0 matrices. Instead, contours of σf;� are shown in Fig. 8 as a function of nominal
parameters and for the specific P0 matrix defined above.
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Fig. 8 Earth gravity-gradient model: contour plots of 3σf ;� in kilometers as a function of cruise
duration t f , nominal telescope distance to Earth r�, telescope-starshade nominal distance ρ, and
Earth formation angle θ�.
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Four observations are made in this paragraph and are revisited in Sec. 5.2.3. First, σf;� is
maximized by small telescope–Earth distances r�. Second, σf;� is also maximized by small
starshade–Earth distances s�, i.e., when θ� ¼ 0° and ρ is maximized. Third, without gravity
gradients, 3σf ¼ 210, 348, and 520 km for tf ¼ 2, 3, and 4 weeks, respectively. Comparing
these values to Fig. 8 shows that the influence of gravity gradients increases with tf, especially
for cruises longer than 2 weeks. Fourth, for given values of tf and r� (i.e., within a given contour
plot in Fig. 8), σf;� changes by <6% for all combinations of θ� and ρ.

For reacquisition to be successful, the starshade must be in the FOV of the CS at t ¼ tf.
In Fig. 9, the same results as in Fig. 8 are plotted in terms of the angular retargeting error rather
than the relative position distance error. Although it was observed above that ρ only has a sec-
ondary influence on σf;�, the size of the FOV in kilometers scales with ρ. As an example, Fig. 9
(bottom) predicts that reacquisition is not guaranteed at a 3σf confidence level with a CS FOVof
�3000 arcsec (0.83°) for cruises of 3 weeks if ρ ⪅ 30 Mm. For cruises of 4 weeks, this FOV is
not sufficient to guarantee reacquisition at any of the ρ values shown in the figure.

However, conservative uncertainty assumptions have been made as mentioned in Sec. 4.1.
Moreover, in Figs. 8 and 9 (bottom), the value of σδ_s;ret ¼ 40 cm∕s is kept constant. At close
relative ranges, the starshade has to cover smaller distances for a given retargeting angle, so
3-week cruises with large retargeting burns are unlikely. Burns of smaller magnitude correspond
to smaller execution errors, as discussed in Appendix A. Figure 9 (top) therefore shows the same
results for σδ_s;ret ¼ 25 cm∕s. In this case, the model predicts successful retargeting down to
26 Mm for 3-week cruises.

5.2.3 State matrix modal decomposition

To gain further insight into the system’s dynamics, the eigendecomposition of the matrix A� is

evaluated analytically. The state matrix is A� ¼ Û�Λ�V
†
�, and the final state transition matrix

is Φ�f ¼ expðA�tfÞ ¼ Û� expðΛ�tfÞV†
�. Here, Û� is A�’s normalized eigenvector matrix
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Fig. 9 Earth gravity-gradient model: contour plots of 3σf ;� retargeting angular error in degrees as a
function of cruise duration t f , nominal telescope distance to Earth r�, telescope-starshade nominal
distance ρ, and Earth formation angle θ�, for r� ¼ 1200 Mm. As an example, regions exceeding a
�3000 arcsec (0.83°) CS FOV are grayed out.

Flinois et al.: Efficient starshade retargeting architecture using chemical propulsion

J. Astron. Telesc. Instrum. Syst. 021206-16 Apr–Jun 2021 • Vol. 7(2)



(i.e., each eigenvector ûi is normalized), V� ¼ ðÛ−1
� Þ† is A�’s adjoint eigenvector matrix, and

Λ� is a diagonal matrix composed of A� ’s eigenvalues. Before normalization, the eigenvector
matrix can be shown to be

EQ-TARGET;temp:intralink-;e022;116;698U� ¼

2
6666666664

Rs Rs Rs −I −I −I
0 0 0 I I I

RsΛs −RsΛs 0 −Λr Λr 0

0 0 0 Λr −Λr 0

0 0 −RsΛ2
s 0 0 Λ2

r

0 0 0 0 0 −Λ2
r

3
7777777775
; (22)

where Λs and Λr are defined as

EQ-TARGET;temp:intralink-;e023;116;574Λs ¼ diagð λs1; λs2; λs3 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�∕s3�

q
diagð ffiffiffi

2
p

; j; j Þ; (23)

EQ-TARGET;temp:intralink-;e024;116;523Λr ¼ diagð λr1; λr2; λr3 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�∕r3�

q
diagð ffiffiffi

2
p

; j; j Þ; (24)

where j ¼ ffiffiffiffiffiffi
−1

p
and diagð·Þ is a diagonal matrix whose elements that are the arguments it oper-

ates on. The corresponding eigenvalue matrix can be shown to be

EQ-TARGET;temp:intralink-;e025;116;479Λ� ¼ diagðΛs; −Λs; 0; Λr; −Λr; 0 Þ: (25)

In Eq. (22), the first, second, and third pairs of rows represent position, velocity, and accel-
eration components respectively, like the state vector in Eq. (3). The left three columns only have
nonzero relative error components. Therefore, they correspond to pure starshade error dynamics.
The right three columns only have equal-and-opposite absolute telescope error components and
relative error components. Therefore, they correspond to pure telescope error dynamics.

In general, the angle between s� and r� is small because ρ ≪ r�. If Rs ¼ I holds exactly,
Eq. (22) shows that the dynamics along and across the r� axis are entirely decoupled because Λs

and Λr are diagonal matrices.
Four of A� ’s eigenvalues are the real stable–unstable pairs �λs1 and �λr1. The unstable

eigenvalues λs1 and λr1 are maximized by minimizing r� and s�, consistent with the first and
second observations from Sec. 5.2.2 respectively. The two pairs of associated eigenvectors in
Eq. (22) show that these modes correspond to error growth and decay along r� and s�, i.e., the
Earth-spacecraft directions. As an example, if r� ¼ 1;200 Mm, ρ ¼ 37.7 Mm, and θ� ¼ 0° (so
that Rs ¼ I), growth/decay time constants are 16.2 and 17.0 days. These values are consistent
with the third observation from Sec. 5.2.2.

Next, A� has four pairs of purely imaginary complex-conjugate eigenvalues: �λs2 ¼ �λs3
and �λr2 ¼ �λr3. The four pairs of associated eigenvectors in Eq. (22) show that these modes
correspond to constant amplitude oscillations in the two axes normal to r� and the two axes
normal to s�, respectively. With the same parameters as above, the periods of the oscillations
are 144.3 and 151.4 days, i.e., much longer than the retargeting cruise duration.

The final six eigenvalues have a zero growth rate. Physically, they represent the shift of the
system’s equilibrium state, away from x0 ¼ 0, caused by SRP uncertainty. The system is at its
equilibrium when the starshade and telescope true positions are such that the gravity gradient
acceleration is exactly canceled by the SRP uncertainty acceleration.

Out of these 18 modes, the only 6 that depend on ρ are �λsi for 1 ⩽ i ⩽ 3. Equation (23)

shows that these eigenvalues scale with s−3∕2� ≈ r−3∕2� ½1 − ð3∕2Þðρ∕r�Þ cosðθ�Þ�. Therefore, as
θ� → 90°, the distance ρ is expected to have a vanishing impact on the dynamical system,
as confirmed by the horizontal contour lines near θ� ¼ 90° in Fig. 8. For Roman-starshade
parameters, the effect of ρ is maximized when ρ ¼ 37.7 Mm, r� ¼ 1;200 Mm, and θ� ¼ 0°,
which leads to ð3∕2Þðρ∕r�Þ cosðθ�Þ ¼ 0.047. Therefore, the fourth observation from Sec. 5.2.2
is explained by the fact that the choice of ρ cannot change any of A� ’s eigenvalues by more
than 5%.
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Although the modal decomposition above explains the trends observed in Sec. 5.2.2, it is
not sufficient to fully understand the system’s dynamics. For Roman-starshade parameters, the
growth of the relative position error over 4 weeks due to individual eigenmodes can be no larger
than a factor of expðλs1tfÞ ≈ 5.6. By contrast, recalling that σδρ;sci ¼ 167 m, Fig. 8 shows that the
largest growth factor is actually ∼1500. This discrepancy between modal and transient growth is
explained by non-normality in the system (e.g., Ref. 44): the initial state leading to the worst-case
retargeting error σf has components along several nonorthogonal eigenvectors that have different
growth/decay rates. As a result, the output norm can temporarily grow faster than if the initial
state were aligned with any individual unstable mode.

Although the covariance analysis framework introduced above does output the worst-case
transient output norm σf, its value alone does not provide insights into the mechanisms through
which the retargeting error grows. To address this limitation, Appendix B shows how to com-
pute the unique set of appropriately scaled initial conditions and disturbances (i.e., desats),
collected in the vector z̃0, that lead to the worst-case output norm σf for given P0 and Qk matri-
ces. The “angle” between two systems’ z̃0 vectors therefore provides a measure of how similar
the error growth mechanisms leading to σf are for the two systems, as illustrated in the next
section.

5.2.4 Bounding model

Sections 5.2.2 and 5.2.3 show that θ� only has a secondary influence on the error dynamics
and that θ� ¼ 0° maximizes σf;�. If θ� ¼ 0° and the Sun and Moon are in line with the Earth,
starshade, and telescope, then ŝ� ¼ ŝ⊙ ¼ ŝ☾ ¼ r̂� ¼ r̂⊙ ¼ r̂☾, where ⊙ refers to the Sun and
☾ refers to the Moon. As a result, the linear system in Eq. (21) is unmodified, except that

(a)

(b)

(c)

Fig. 10 Comparison of the worst-case growth of relative position error through the bounding
model and gravity-gradient-free model. (a) σf as a function of cruise time t f . (b) Percentage error
between σf values, relative to bounding model. (c) Angle between the initial conditions and dis-
turbances vectors z̃0 corresponding to σf for the two systems (see Appendix B).
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μ�∕r3� becomes ðμ�∕r3� þ μ⊙∕r3⊙ þ μ☾∕r3☾Þ and μ�∕s3� becomes ðμ�∕s3� þ μ⊙∕s3⊙ þ μ☾∕s3☾Þ,
as summarized in Table 4. Using the findings from Sec. 5.2.2, if the largest representative value
of ρ and the smallest representative values of r�, r⊙, and r☾ are used, this system is expected to
lead to bounding transient growth for all cruise durations.

This bounding model with r� ¼ 1;200 Mm, θ� ¼ 0°, and ρ ¼ 37.7 Mm is compared with
the gravity-gradient-free model in Fig. 10. While the gravity-gradient-free model is a decoupled
isotropic double integrator, the bounding model is an unstable model where relative and absolute
error dynamics are coupled and grow anisotropically. Thus, when tf ¼ 4weeks, the final relative
position error 1σ covariance ellipsoid is a 173-km-radius sphere for the gravity-gradient-free
model. By contrast, the ellipsoid dimensions are 269, 137, and 137 km for the bounding model:
without gravity gradients, the retargeting error is 36% smaller along the Earth-telescope axis but
26% larger in the directions normal to it.

Despite these differences, the angle between the two corresponding z̃0 vectors is only 7.3° [see
Fig. 10(c)]. This similarity shows that, although gravity gradients do measurably increase σf for

(a)

(b) (c)

(d) (e)

Fig. 11 (a) Normalized contribution to σf from each source of uncertainty. Components are shown
for (b) initial position uncertainty (the inset is a close-up of small contributions), (c) initial velocity
uncertainty, (d) desat uncertainty, and (e) SRP uncertainty.
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cruise durations between 2 and 4 weeks, their influence is not sufficient to fundamentally change
the distribution of initial conditions and disturbances that maximize it. Due to the relatively
benign environment at SEL2, it takes longer cruises for the unstable modes associated with
gravity gradients to dominate the dynamics. As an example, consider a cruise duration of
100 days, when tf is 6.5 and 6.8 times as large as the two unstable mode time constants in
the bounding system. In this case, the angle between the z̃0 vector of the bounding and the
gravity-gradient-free system is 29.8°, indicating that different error growth mechanisms are
involved. Thus, during Roman-starshade retargeting cruises, σf mostly grows through a dou-
ble-integrator-like propagation of initial errors and disturbances, which is further exacerbated
by gravity gradients.

5.2.5 Sensitivity to sources of uncertainty

In this section, the sensitivity of σf to the sources of uncertainty included in the analysis is
evaluated. Appendix C shows that σf can be formulated as the root-sum-square (RSS) of con-
tributions due to each source of uncertainty, including desats. With this formulation, all of the
contributions of σf can be evaluated with a single covariance propagation simulation. The rel-
ative importance of the different contributions as a function of tf is shown in Fig. 11 for the
bounding model. The distribution of contributions after 3 weeks is also shown in Fig. 12(a).

The value of σf is dominated by the initial relative position error for very short cruise dura-
tions. As tf increases beyond a few hours, the velocity errors begin to dominate. In particular, the
retargeting burn execution error is the largest contributor, followed by the initial relative velocity
knowledge uncertainty from the science phase. Figure 11 also shows the influence of desat resid-
uals: the later the maneuver is triggered during the cruise, the less time its residuals have to grow.
Finally, for tf values beyond a week, the influence of the relative position SRP uncertainty
becomes considerable. For a cruise time of 3 weeks and beyond, it becomes one of the dominant
contributors to the retargeting error. For all tf values, as expected, σδr;sci and σδ_r;sci each con-
tribute <5% of the total error.

In Appendix C, it is also shown that the normalized sensitivity of σf to small fractional
changes in individual sources of uncertainty can be expressed as the square of the correspond-
ing normalized contribution. Figure 12(b) shows these sensitivities after a cruise of 3 weeks. It
illustrates that σf is highly sensitive to small fractional changes in its larger contributors but is
almost not sensitive at all to changes in nondominant contributors. In this case, it shows that
efforts to reduce σf are likely to be most effective if they focus on reducing σδ_ρ;sci, σδ_s;ret,
and σδs̈;SRP.

(a)

(b)

Fig. 12 (a) Absolute contributions to σf at t f ¼ 3 weeks. (b) Normalized sensitivities of σf at t f ¼ 3
weeks.
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6 Conclusions

In this article, a retargeting architecture for a starshade flying in formation with a space telescope
at Sun–Earth L2 (SEL2) is proposed and shown to be feasible. Over several weeks, the starshade
travels tens of thousands of kilometers to align itself with the telescope’s next target star. It must
do so with sufficient precision to be reacquired by the telescope’s dedicated coarse acquisition
sensor (CS), which has a degree-level FOV.

The proposed retargeting architecture uses chemical propellant only and does not require
intermittent starshade position measurements either from the ground or the telescope. It hinges
on the use of an array of COTS accelerometers on board the starshade spacecraft that drive down
the retargeting burn execution error to a level that enables reacquisition with the CS. It is hoped
that this architecture could reduce the cost and complexity of prospective starshade missions.

The feasibility of the architecture is demonstrated through a verified covariance analysis
framework. ACS FOVunder 2° is found to be sufficient for reacquisition after 3 week retargeting
maneuvers for a Roman-starshade scenario. An FOVunder 3° is also found to be sufficient for a
HabEx-starshade scenario.

Further analysis shows that the relative position errors grow mostly through the propagation
of initial state uncertainty and disturbances, which are exacerbated by SEL2 gravity gradients.
With the parameter values considered in the analysis, the retargeting burn execution error, sci-
ence phase relative velocity uncertainty, and starshade SRP uncertainty are found to be the larg-
est contributors. For cruise durations beyond about 2 weeks, gravity gradients significantly
increase the worst-case retargeting error. This effect is sensitive to the absolute distance between
the two spacecraft and Earth. The relative position between the telescope and the starshade,
however, only has a secondary influence. Overall, as might be expected, the combination of
large burns, long cruise durations, and short final reacquisition ranges is most stressing to this
retargeting architecture.

Having developed a framework that accurately evaluates starshade retargeting error statistics
and sensitivities, the next step to be addressed in future work is to apply this tool to specific
starshade DRMs and generate tailored estimates of expected retargeting performance.

7 Appendix A: Retargeting Burn Execution Error

In this appendix, the retargeting burn execution error statistics are evaluated as a function of
relevant sources of uncertainty. The model is then applied to the proposed retargeting ConOps
with Roman-starshade parameters.

7.1 Burn Execution Error

In this section, an expression for IδΔvexec, the inertial frame execution error due to a Δv per-
formed by the starshade’s main thrusters, is derived:

EQ-TARGET;temp:intralink-;e026;116;252

IδΔvexec ¼ IΔv� − IΔv; (26)

where I denotes the inertial frame quantities and IΔv� and IΔv are the true and nominal (i.e.,
commanded) Δv vectors, respectively. Without loss of generality, the inertial frame is defined as
having its third axis aligned with the commanded burn direction: IΔv ¼ ½0;0; 1�†.

First, an accelerometer error model is introduced, and the corresponding error vector in indi-
vidual measurements is derived. The first-order effects of accelerometer noise, bias, scale factor
errors, internal misalignments, known mounting misalignment, and mounting misalignment
uncertainty are taken into account. Spacecraft pointing errors and spacecraft pointing uncertainty
are also included.

Second, an expression for the full execution error vector IΔvexec is derived based on this
accelerometer model. As described in Sec. 2.1, the retargeting Δv is performed with the star-
shade main thrusters, nominally aligned with the commanded burn direction. The RCS thrusters
are used to control attitude during the burn, closing the loop on measurements from a set of
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accelerometers to reduce the execution error. The burn is terminated when the total estimated
Δv vector matches the commanded Δv vector up to a given threshold.

7.1.1 Accelerometer model

The accelerometer outputs incremental Δv measurements at fixed time intervals Δt. The time
since the start of the burn is t ¼ kΔt. The error in the k’th measurement is

EQ-TARGET;temp:intralink-;e027;116;650

IδΔvmeas;k ¼ IΔvmeas;k − IΔv�k; (27)

where IΔvmeas;k and IΔv�k are the measured and true Δv increment vectors, respectively.
The accelerometer model derived in Ref. 45 is used to compute the error in terms of the

accelerometer parameters. Markov bias, high-order bias coefficients, and all second-order error
terms are considered negligible. Gravity gradient and SRP accelerations are also considered
negligible compared with the acceleration due to thrusters. The resulting model is

EQ-TARGET;temp:intralink-;e028;116;553

AΔvmeas;k ¼ ðI þ AMÞAΔv�k þ AΔvδ;k; (28)

EQ-TARGET;temp:intralink-;e029;116;505

AM ¼ ANint þ AK; AΔvδ;k ¼ Ank þ Ab; (29)

where A denotes the accelerometer-frame quantities, ANint is the internal accelerometer mis-
alignment matrix, AK is the diagonal matrix of accelerometer scale factors along the acceler-
ometer axes (assumed to span an orthogonal right-handed set), Ank is the accelerometer noise
vector, and Ab is the accelerometer bias vector. Individual components of these four sources of
uncertainty are uncorrelated and zero-mean normally distributed random variables. The asso-
ciated component standard deviations are σint, σK , σn, and σb, respectively.

In practice, the accelerometers are often provided as a set of four single-axis units laid out in a
pyramidal configuration, which provides some averaging and redundancy. The assumption that
there are three orthogonal single-axis accelerometers is thus conservative.

7.1.2 Accelerometer measurement error

The following expression for the inertial frame incremental measurement error can be derived:

EQ-TARGET;temp:intralink-;e030;116;332

IδΔvmeas;k ¼ IMtot;k
IΔv�k þ IΔvδ;k; (30)

EQ-TARGET;temp:intralink-;e031;116;284

IMtot;k ¼ RIBðBNIB
n;k þ BNIB

b ÞRBI þ RIAðANBA þ ANint þ AKÞRAI ; (31)

EQ-TARGET;temp:intralink-;e032;116;259

IΔvδ;k ¼ RIAðAnk þ AbÞ; (32)

where B denotes the body-frame quantities. Rotation matrices are denoted, for example, by
RIA, which is the accelerometer frame to inertial frame rotation matrix. In the equation above,
BNIB

n;k,
BNIB

b , and ANBA are the pointing knowledge noise, pointing knowledge bias, and mount-
ing misalignment uncertainty contributions, respectively. The three distinct components of each
matrix are uncorrelated and zero-mean normally distributed random variables, with standard
deviations of σn;IB, σb;IB, and σBA, respectively. In addition, it can be shown that the effect
of zero-mean but known pointing control error and known accelerometer mounting misalign-
ments cancel to first order.

7.1.3 Δv Execution error

In this section, an expression for the full Δv execution error vector is derived based on the accel-
erometer model introduced above. Whereas the commanded burn IΔv is known on board, IΔv�,
the final true realized impulse, is a stochastic vector that depends on how the on-board system
controls the burn execution and termination. An explicit expression for IΔv� is thus derived in
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terms of known quantities and sources of uncertainty with known statistics using the expression
for IδΔvmeas;k derived above.

When the burn is stopped, at the final time step k ¼ nk, the integrated accelerometer mea-
surement is

EQ-TARGET;temp:intralink-;e033;116;686

IΔvmeas ¼
Xnk
k¼1

IΔvmeas;k ¼ IΔvþ IΔvctl; (33)

where IΔvctl is the measured but uncorrected control error at burn termination. Its statistics are
known and depend on both the nominal burn itself and the selected burn termination criteria,
discussed in Sec. 7.2.3. With this definition, the execution error can be shown to be

EQ-TARGET;temp:intralink-;e034;116;601

IδΔvexec ¼
�
−

1

nk

Xnk
k¼1

IMtot;k

�
IΔv −

Xnk
k¼1

IΔvδ;k þ IΔvctl: (34)

7.1.4 Averaging multiple accelerometers

The measurement from nacc three-axis accelerometers is computed on board and averaged to find
the final acceleration measurement. The sources of uncertainty are zero-mean normally distrib-
uted random variables that depend on the accelerometer model. As a result, when several accel-
erometers are used, each one has different error characteristics. However, all accelerometers
are subject to the same pointing knowledge error. If all accelerometers are nominally coaligned,
the averaged execution error can be shown to be

EQ-TARGET;temp:intralink-;e035;116;450

IδΔvexec;avg ¼
�
−1
nacc

Xnacc
i¼1

1

nk

Xnk
k¼1

IMtot;k;i

�
IΔvþ −1

nacc

Xnacc
i¼1

Xnk
k¼1

IΔvδ;k;i þ IΔvctl; (35)

where the known control error does not benefit from accelerometer averaging. Rather, it is a
function of the RCS control loop, as discussed in Sec. 7.2.3.

7.2 Burn Execution Error Statistics

7.2.1 Execution error covariance matrix

The execution error expectation EðIδΔvexec;avgÞ is zero as it is a linear combination of uncorre-
lated zero-mean random variables. Its covariance matrix Pexec ¼ CovðIδΔvexec;avgÞ is

EQ-TARGET;temp:intralink-;e036;116;289Pexec ¼ RIBðPn;IB þ Pb;IBÞRBI þ RIAðPBA þ Pint þ PKÞRAI þ Pδ þ Pctl; (36)

EQ-TARGET;temp:intralink-;e037;116;245Pn;IB ¼ −1
nk

Cov½BNIB
n;kðBΔvÞ�; Pb;IB ¼ −Cov½BNIB

b ðBΔvÞ�; (37)

EQ-TARGET;temp:intralink-;e038;116;210PBA ¼ −1
nacc

Cov½ANBAðAΔvÞ�; (38)

EQ-TARGET;temp:intralink-;e039;116;176Pint ¼
−1
nacc

Cov½ANintðAΔvÞ�; (39)

EQ-TARGET;temp:intralink-;e040;116;142PK ¼ 1

nacc
Cov½AKðAΔvÞ�; (40)

where the statistics of each instance of BNIB
n;k,

BNIB
b , ANBA, ANint, and AK are known and fixed

both in time and across accelerometers.
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7.2.2 Open-loop execution error components

The lateral and longitudinal open-loop execution errors are defined as the components of the
error across and along the commanded burn direction, respectively. They are modeled as the sum
of a fixed term and a proportional term:

EQ-TARGET;temp:intralink-;e041;116;680σ2open;lat ¼ σ2open;lat;fix þ Δv2cmdσ
2
open;lat;prop; σ2open;lon ¼ σ2open;lon;fix þ Δv2cmdσ

2
open;lon;prop; (41)

where Δvcmd is the commanded burn magnitude. As a result, the open-loop covariance matrix
is Pexec ¼ diagðσ2open;lat; σ2open;lat; σ2open;lonÞ.

7.2.3 Burn termination criteria

Accelerometers and RCS thrusters are used to reduce the execution error from its open-loop
value above to its closed-loop value given by Eq. (36). The covariance of this closed-loop
execution error depends on the final control error term Pctl.

In the longitudinal direction, the burn is terminated when the longitudinal impulse magnitude
measured by the accelerometers is equal to Δvcmd. Assuming timing biases have been calibrated
out, the resulting longitudinal control error variance is

EQ-TARGET;temp:intralink-;e042;116;512σ2ctl;lon ¼
Δv2cmd

t2burn
σ2timing; (42)

where tburn is the burn duration and σtiming is the burn termination timing accuracy.
In the lateral directions, the RCS thrusters are used to close the loop on the main thruster’s

lateral execution errors, as measured with the accelerometers. This control loop is modeled by
the sum of a fixed term and a residual that is a function of the control loop time constant tctl:

EQ-TARGET;temp:intralink-;e043;116;417σ2ctl;lat ¼ σ2ctl;lat;fix þ expð−2tburn∕tctlÞσ2open;lat: (43)

If tburn ≪ tctl, the control loop is too slow to correct open-loop residuals and σ2ctl;lat tends

to σ2ctl;lat;fix þ σ2open;lat. Conversely, if tburn ≫ tctl, the control loop is effective and σ2ctl;lat tends

to σ2ctl;lat;fix.

7.2.4 Closed-loop execution error components

Analytic expressions of the components of Eq. (36) are derived as follows. First, the burn ter-
mination criteria defined above are applied to the lateral and longitudinal components of Pctl.
Second, Eq. (36) is rewritten in terms of Δvcmd and tburn instead of nk by expressing σn;IB, σb;IB,
σn, and σb in terms of their continuous-time equivalents, denoted with an overbar. Third, PK

depends on the orientation of the accelerometer axes with respect to the nominal burn direction.
It is diagonal if accelerometers axes are equidistant from the burn direction such that AΔv ¼
½1;1; 1�†ðΔvcmd∕

ffiffiffi
3

p Þ. It is also diagonal if one axis is aligned with the burn such that RIA ¼ I.
In these two cases, the lateral and longitudinal components are expressed as

EQ-TARGET;temp:intralink-;e044;116;205

σ2exec;lat ¼
�
Δv2cmd

tburn

�
σ2n;IB þ ðΔv2cmdÞσ2b;IB þ

�
Δv2cmd

nacc

�
σ2BA þ

�
Δv2cmd

nacc

�
σ2int

þ
�
κlatΔv2cmd

nacc

�
σ2K þ

�
tburn
nacc

�
σ2n þ

�
t2burn
nacc

�
σ2b þ σ2ctl;lat; (44)

EQ-TARGET;temp:intralink-;e045;116;118σ2exec;lon ¼
�
κlonΔv2cmd

nacc

�
σ2K þ

�
tburn
nacc

�
σ2n þ

�
t2burn
nacc

�
σ2b þ σ2ctl;lon; (45)

where κlat ¼ κlon ¼ 1∕3 in the equidistant case and κlat ¼ 0 and κlon ¼ 1 in the aligned case.
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7.3 Application to Roman-Starshade Scenario

7.3.1 Retargeting burn approach

In this section, the execution error model derived above is applied to the Roman-starshade
retargeting burn ConOps described in Sec. 2.1. The on-board accelerometers are used both
during the main burn and during the two slews to measure residual Δvs (only while thrusters
are firing). The total measured slew residual standard deviation is σctl;slew per axis. In addition,
the measurement error of the slews is σ2meas;slew. The variances of the lateral and longitudinal
components of the open-loop RCS correction burn are modeled as

EQ-TARGET;temp:intralink-;e046;116;618σ2corr;lat ¼ σ2corr;fix þ ðσ2ctl;slew þ σ2ctl;latÞσ2corr;prop; σ2corr;lon ¼ σ2corr;fix þ ðσ2ctl;slew þ σ2ctl;lonÞσ2corr;prop:
(46)

After the correction burn is applied, the net execution error is evaluated by replacing σ2ctl;lat
and σ2ctl;lon in Eq. (44) and Eq. (45) by σ2corr;lat and σ2corr;lon, respectively, and adding in a further
σ2meas;slew contribution to each axis.

7.3.2 Parameter selection

A spacecraft mass of 1200 kg and four 22 N thrusters are considered. The performance of COTS
and flight qualified sensors and actuators is assumed, as summarized in Tables 1, 2, and 5. In
Table 5, the value of σb assumes that the accelerometer bias has been calibrated in flight before
the retargeting burn takes place. One calibration strategy is to measure the SRP acceleration

Table 5 Uncertainty parameters for retargeting burn execution error.

Parameter Symbol Value (1σ∕axis)

Internal misalignment σint 1 mrad

Scale factor error σK 100 ppm

Bias calibration residual σb 5 μm∕s2

Noise (10 Hz sampling) σn (7∕
ffiffiffiffiffiffi
10

p
) μg∕

ffiffiffiffiffiffi
Hz

p

Mounting alignment uncertainty σBA 2.62 mrad

Pointing knowledge uncertainty noise (10 Hz sampling) σn;IB (2∕
ffiffiffiffiffiffi
10

p
) arcsec∕

ffiffiffiffiffiffi
Hz

p

Pointing knowledge uncertainty bias σb;IB 3 arcsec

Open-loop lateral burn residual proportional term σopen;lat;prop 2%

Open-loop lateral burn residual fixed term σopen;lat;fix 3.33 mm∕s

Open-loop longitudinal burn residual proportional term σopen;lon;prop 2%

Open-loop longitudinal burn residual fixed term σopen;lon;fix 3.33 mm∕s

Total control error from slew maneuvers σctl;slew 0.15 m∕s

Total measurement error from slew maneuvers σmeas:slew 7.1 mm∕s

Correction burn residual proportional term σcorr;prop 5%

Correction burn residual fixed term σcorr;fix 3.33 mm∕s

Final closed-loop lateral control error fixed term σctl;lat;fix 3.33 mm∕s

RCS control loop time constant tctl 200 s

Burn termination timing accuracy σtiming 200 ms
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acting on the precisely characterized 335 m2 starshade surface area. Depending on the surface
properties and propellant mass at the time of calibration, the SRP acceleration is expected to be at
most 2.5 μm∕s2. A conservative value of σb ¼ 5 μm∕s2 is thus used. The values of σBA, σopen,
σctl;lat;fix, and tctl are consistent with flight projects such as Mars Science Laboratory and Europa
Clipper. The value of σctl;slew is based on the order-of-magnitude approximations for a burn per-
formed with a technique similar to Ref. 46, and the value of σmeas;slew was generated using the
accelerometer model described in this section. In practice, for small burns, the model-based
estimation of the execution error may be used if it is found to outperform accelerometer-based
estimation.

7.3.3 Results

Figure 13 shows the execution error and its components as a function of the nominal burn mag-
nitude for accelerometers axes that are equidistant from the burn direction. The lateral compo-
nent of the error is larger than the longitudinal component, which is mostly due to the
uncorrected control error, and remains approximately constant at about 21 mm∕s. The largest
contributions to the lateral execution error are the uncorrected control error after the correction
burn and the accelerometer mounting and internal misalignments. For nominal burn magnitudes
around 20 m∕s, the total execution error standard deviation is below 40 cm∕s. This value is
therefore used in the covariance analysis above, unless specified otherwise.

8 Appendix B: Comparing Output Norms of LTI Systems

8.1 LTI Systems Without Inputs

In this section, a framework for comparing output norms of linear time-invariant (LTI) systems,
regardless of diagonalizability and stability is introduced. The systems being compared must
have no external inputs such that _x ¼ Ax. This assumption is relaxed in Sec. 8.2. They must
also have the same state vector x and the same output matrix C, but potentially different state
matrices A and initial state covariance matrices P0.

The final output norm of such LTI systems is kyfk ¼ kCxfk ¼ kCΦfx0k. It is common for
individual states within x not to have the same units or nominal magnitudes (e.g., absolute versus
relative position or position versus acceleration). For such systems, finding the initial state x0 that

maximizes kyfk while constraining the unweighted initial state norm kx0k ¼
ffiffiffiffiffiffiffiffiffi
x†0x0

q
may not be

physically meaningful. Without a scaling matrix, this inner-product not only gives more weight
to state variables with values that are naturally larger but may also sum quantities that have
different physical units.

(a) (b)

Fig. 13 Contributions to (a) longitudinal and (b) lateral execution errors as a function of nominal
burn magnitude. Insets show close-ups of small contributions.
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The inner-product can be made physically meaningful by changing the system coordinates
using P0. Using the initial covariance matrix, state variables can be expressed in terms of their
likelihood. Here, the likelihood of a scalar initial state x0 with standard deviation σx;0 is defined as

z0 ¼ x0∕σx;0. In general, the initial state likelihood is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x†0P

−1
0 x0

q
¼ kP−1∕2

0 x0k ¼ kz0k.
Here, z0 ¼ P−1∕2

0 x0 is the initial state likelihood vector and P
−1∕2
0 is found from the singular value

decomposition (SVD) of the initial covariance matrix: P0 ¼ ÛP0Σ2
P0Û

†

P0. The following are then

defined: P−1∕2
0 ¼ Σ−1

P0Û
†

P0 and P1∕2
0 ¼ ÛP0ΣP0 so that P1∕2

0 P−1∕2
0 ¼ P−1∕2

0 P1∕2
0 ¼ I.

The transformed system dynamics are _z ¼ Azz, where Az ¼ P−1∕2
0 AP1∕2

0 and the output

y ¼ CP1∕2
0 z is unchanged. In the transformed coordinates, the initial state covariance matrix

is the identity matrix Eðz0z†0Þ ¼ I and inner-products are now physically meaningful: kzk is the

total likelihood of the state x ¼ P1∕2
0 z and cos−1½z†1z2∕ðkz1kkz2kÞ� is the “angle” between like-

lihood states z1 and z2.
Using this coordinate transformation, the initial state x0 that maximizes the final output norm

kyfk, subject to kz0k ¼ 1 is sought:

EQ-TARGET;temp:intralink-;e047;116;539kyfk2 ¼ x†0Φ
†

fC
†CΦfx0 ¼ z†0½ðP1∕2

0 Þ†Φ†

fC
†CΦfP

1∕2
0 �z0 ¼ z†0V̂zΣ2

z V̂
†
zz0; (47)

where ÛzΣzV̂
†
z is the SVD of CΦfP

1∕2
0 . Each column v̂zi of the unitary matrix V̂z corresponds to

a normalized initial state z0. Setting z0 ¼ v̂zi leads to a final state with an output yf ¼ ûisi that is
aligned with the i’th largest semimajor axis of the final output covariance matrix Py;f ellipsoid,
ûi. The corresponding output norm given by the i’th singular value in Σz, i.e., kyfk ¼ si, is the
length of the corresponding semimajor axis. Consequently, the maximum final output norm is

the first singular value σf ¼ sz1, corresponding to z0 ¼ v̂z;1 and the initial state x0 ¼ P1∕2
0 v̂z;1.

The maximum final output norm σf can also be evaluated from covariance propagation: the

final output covariance matrix is Py;f ¼ CPfC† ¼ CΦfP0Φ
†

fC ¼ ÛzΣ2
zÛ

†
z and its largest sin-

gular value is thus also σf ¼ sz1. However, covariance propagation does not provide information
about the initial state x0 that leads to this maximum final output norm.

8.2 LTI Systems with Impulsive Inputs

This section focuses on LTI systems with a known number n of impulsive disturbances wi with
covariance matrices Qi, taking place at t ¼ tw;i, where 1 ≤ i ≤ n. For such systems, the frame-
work defined above is applied by writing the final output as

EQ-TARGET;temp:intralink-;e048;116;296yf ¼ CΦfx0 þ
Xn
i¼1

CΦw;iΓwi ¼ CΦ̃fx̃0 ¼ CΦ̃fP̃
1∕2
0 z̃0; (48)

where Φw;i ¼ exp½Aðtf − tw;iÞ� and Φ̃f ¼ ½Φf;Φw;1; : : : ;Φw;n�. The initial augmented covari-
ance matrix is

EQ-TARGET;temp:intralink-;e049;116;221P̃0 ¼

2
666664

P0

Pw;1

. .
.

Pw;n

3
777775
; (49)

where Pw;i ¼ ΓQiΓ† and P̃1∕2
0 is identified using SVD as before. The initial augmented like-

lihood state is z̃0, and the augmented initial state is x̃0 ¼ ½x†0;w†

1Γ†; : : : ;w†
nΓ†�† ¼ P̃1∕2

0 z̃0.
Using the procedure from Sec. 8.1, the value of σf, i.e., the maximum output norm of kyfk

subject to kz̃0k ¼ 1, is the first singular value of CΦ̃fP̃
1∕2
0 . The vector z̃0, given by the first right
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singular vector of CΦ̃fP̃
1∕2
0 , is the distribution of both initial uncertainties and impulsive dis-

turbances that leads to kyfk ¼ σf.

9 Appendix C: LTI System Output Norm Sensitivity

The initial covariance matrix can be decomposed in the same way as the disturbance covariance
matrices Pw;i in Sec. 8.2, by defining the block diagonal matrix

EQ-TARGET;temp:intralink-;e050;116;640Q0 ¼ diagðσ2δρ;sciI; σ2δr;sciI; σ2δ_ρ;sciI; σ2δ_r;sciI; σ2δ_s;TCMI; σ2δ_r;TCMI; σ2δ_s;retIÞ; (50)

such that P0 ¼ Γ0Q0Γ
†

0, where Γ0 is the corresponding matrix of coefficients that establish how
the input sources of uncertainty are correlated to form P0. Similarly, the full augmented initial
covariance matrix is expressed as P̃0 ¼ Γ̃0Q̃0Γ̃

†

0. Here, Q̃0 is a diagonal matrix with elements that
are the variances of the initial state and impulsive disturbances, and Γ̃0 is the corresponding aug-
mented coefficient matrix. The number ~n of elements ~q20i in ~Q0 and columns γ0;i in ~Γ0 is the sum
of the number of impulsive disturbances n and the number of terms in Q0, defined in Eq. (50).

Using this notation, it can be shown that the worst-case final relative position error σf for
unity norm z̃0 is the RSS of the contributions σf;i from each of the ~n sources of uncertainty in the
system:

EQ-TARGET;temp:intralink-;e051;116;491σ2f ¼
X~n

i¼1

σ2f;i; (51)

where σf;i ¼ u†y1CΦ̃f γ̃0;iq̃0;i and uy1 is the first singular vector of P̃y;f ¼ CΦ̃fP̃0Φ̃
†

fC
†.

Normalizing leads to
P

ñ
i¼1 ðσf;i∕σfÞ2 ¼ 1.

Similarly, the normalized sensitivity of σf to each term ~q0;i is given by the square of the
corresponding normalized contribution:

EQ-TARGET;temp:intralink-;e052;116;389σ 0
f;i ¼

�
q̃0;i
σf

�
∂σf
∂q̃0;i

¼
�
σfi
σf

�
2

: (52)

As above,
P

ñ
i¼1 σ

0
f;i ¼ 1 holds. The interpretation of this equation is that, if each term ~q0;i

changes by a small amount ∂ ~q0;i and becomes ~q0;i þ ∂ ~q0;i, then σf becomes σf þ ∂σf, where

EQ-TARGET;temp:intralink-;e053;116;318

∂σf
σf

≈
X̃n
i¼1

�
σf;i

0 ∂q̃0;i
q̃0;i

�
: (53)
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