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Abstract. A starshade suppresses starlight by a factor of 1011 in the image plane of a telescope,
which is crucial for directly imaging Earth-like exoplanets. The state-of-the-art in high-contrast
post-processing and signal detection methods was developed specifically for images taken with
an internal coronagraph system and focused on the removal of quasi-static speckles. These meth-
ods are less useful for starshade images where such speckles are not present. We are dedicated to
investigating signal processing methods tailored to work efficiently on starshade images. We
describe a signal detection method, the generalized likelihood ratio test (GLRT), for starshade
missions and look into three important problems. First, even with the light suppression provided
by the starshade, rocky exoplanets are still difficult to detect in reflected light due to their abso-
lute faintness. GLRT can successfully flag these dim planets. Moreover, GLRT provides esti-
mates of the planets’ positions and intensities and the theoretical false alarm rate of the detection.
Second, small starshade shape errors, such as a truncated petal tip, can cause artifacts that are
hard to distinguish from real planet signals; the detection method can help distinguish planet
signals from such artifacts. The third direct imaging problem is that exozodiacal dust degrades
detection performance. We develop an iterative GLRT to mitigate the effect of dust on the image.
In addition, we provide guidance on how to choose the number of photon counting images to
combine into one co-added image before doing detection, which will help utilize the observation
time efficiently. All the methods are demonstrated on realistic simulated images. © The Authors.
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1 Introduction

A Sun-like star is much brighter (typically 108 to 1010 times) than an Earth-like planet in its
habitable zone.1 Moreover, at a distance of 10 pc, the star and planets in its habitable zone are
separated by around 0.1 arc sec. Thus it is difficult to separate the planet light from that of the star
in the image. There are two main solutions to the challenge of imaging objects in close proximity
to much brighter ones. First, one can use a coronagraph,2 which is a device inside the telescope
to block the starlight from reaching the image plane. Second, one can use a starshade,3,4 which is
a large screen flying on a separate spacecraft positioned between the telescope and the star being
observed to suppress the starlight before it enters the telescope. In many ways, coronagraphs
and starshades are complementary. Coronagraphs are efficient for high-contrast surveys, because
it is easy to point the instrument to different targets. However, they result in a lower optical
throughput relative to a starshade, have the difficulty for designing a coronagraph due to “exotic
pupils,” and are very sensitive to wavefront perturbations. Even small aberrations introduce
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bright speckles, which influence the instrument’s ability for exoplanet observations.5 Thus it
imposes many challenging requirements on the telescope and instruments to design corona-
graphs with ∼10−10 starlight suppression; two mission concepts under study are Habitable
Exoplanet Observatory (HabEx)6 and Large UV/Optical/Infrared Surveyor.7 In comparison, star-
shades are good at deep imaging and spectroscopic characterization. They are not sensitive to
wavefront errors and can be designed to operate over a large bandpass. The total throughput is
high since the starshade does not require any internal masking of the optical beam, which makes
a starshade an excellent option for deep spectroscopy, especially at small inner working angles
(IWA). However, one disadvantage of a starshade is the time it takes to slew the starshade to
realign it with different target stars. The starshade’s ability to efficiently suppress the on-axis
starlight while maintaining high throughput makes it an excellent tool for exploring the habit-
ability of exoplanets. A recently studied potential mission is the Starshade Rendezvous Mission:
a starshade that will work with the Nancy Grace Roman Space Telescope (previously called
WFIRST).8 In the mission, the starshade is launched separately and rendezvous with the tele-
scope in orbit. Starshades are also baselined for the HabEx mission concept.6

Starshades are a new technology, still in development. Coronagraphs, however, have been
used on ground-based telescopes for decades; even the Hubble Space Telescope has a rudimen-
tary coronagraph. Available research on high-contrast imaging is mostly about image processing
and signal detection for coronagraph observations, which focus on alleviating the influence of
quasi-static speckles. However, quasi-static speckles are not present in starshade images, so the
emphasis is on the starshade’s error sources. The dominant sources of noise in starshade images
are sunlight scattering off the starshade edges9 and unsuppressed starlight caused by errors in the
starshade shape.10 The scattered sunlight is confined to two extended lobes perpendicular to the
direction of the Sun and is constant during observations.11 Its stability means that it could poten-
tially be calibrated out, just adding photon noise to a small region around the starshade.
Manufacturing and deployment errors and thermal deformations can distort the starshade shape
and will produce bright spots in images that are hard to distinguish from a real planet signal. One
example shape error we examine in this study is the truncation of the tips of starshade petals.
Additional sources of noise in starshade images come from misalignment of the starshade and
telescope, detector noise, and exozodiacal dust.12

Due to the difference of the noise properties in coronagraph images and starshade images,
previous work on coronagraphs loses its utility on starshade images, which motivates the inves-
tigation of new techniques for starshade images. In this paper, we focus on the impact caused by
errors in the starshade shape and exozodiacal dust and present an automatic detection algorithm,
the generalized likelihood ratio test (GLRT), to provide robust detection on low-signal images in
the presence of shape errors. We have described the GLRT model and its preliminary results for
simulated images with starshade shape errors, dynamics, and detector noise in Ref. 13. We will
review this detection method and introduce an iterative process to detect a planet in the presence
of significant exozodiacal dust. This work focuses on signal detection without the need for post-
processing [e.g., point spread function (PSF) subtraction]. Post-processing may improve the
detection performance but could also complicate the data analysis process and risks introducing
artifacts into or removing part of the planetary signal. We believe demonstrating our signal detec-
tion method on unprocessed images strengthens the argument for the efficiency of our method.
Detailed investigation on post-processing is beyond the scope of the paper.

In Sec. 2, we describe the image simulation process used to generate the test set for our planet
detection methods. Section 3 presents the GLRT detection method and represents the bulk of this
work. An iterative approach of GLRT is presented in Sec. 4 to tackle the problem of exozodiacal
dust. We end by summarizing our work.

2 Image Generation

We briefly summarize the image generation process outlined in Fig. 1. A more detailed treatment
can be found in Ref. 14. The input for the image generation process is a model of the solar system
viewed face-on from 10 pc away developed as part of the Haystacks Project.15 This model con-
tains multi-wavelength image slices, covering the range from 0.3 to 2.5 μm. Each image centers
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on the star, extending to 50 AU from it. The star and planets are represented as single-pixel
sources and the model also includes interplanetary dust and astrophysical background sources.
The pixel values in the image slices are spectral flux densities.

The optical model to calculate the starshade diffraction uses Fresnel diffraction theory16 to
propagate light past the starshade. However, calculating the propagation of each pixel separately
in Haystacks is computationally expensive. Starshades have a noticeable influence on light
propagation only for a small area in close proximity to the starshade, which we call the region
of influence (ROI). The ROI is defined at the input plane of the simulation and is the angular
separation of a source, beyond which the incoming light is considered a plane wave and is not
diffracted by the starshade. The result for an off-axis light source outside the ROI is close to the
result for the same light source as if there were no starshade. Thus we only use Fresnel propa-
gation inside the ROI and simply convolve point sources outside the ROI with the telescope’s
PSF. The starshade we use in this paper is 13 m in radius and has 16 petals, shown in Fig. 2.

The image simulation incorporates the main factors that influence the image of a realistic
system: a matrix represents the starshade outline; defects are added to the shape by adjusting this
matrix; the alignment between the starshade and telescope is accounted for by adding time-de-
pendent formation flying dynamics to the diffraction calculation; and a detector model for the
Roman Telescope is used, which includes clock-induced charge, dark current, degradation dur-
ing lifetime, polarization losses, and read noise.17

Astronomical 
scene

Perfect/defective
starshade

Photon rate on
focal plane

Propagation Propagation
Photon 
counting
images

Noise
model

Sequential photon counting images are added. 

Final images

Inside ROI: propagation; outside ROI: convolution; 

Fig. 1 Diagram of the image simulation process with starshade system illustration (not drawn to
scale). The illustration, i.e., light sources, a starshade and a telescope, on the bottom is aligned
with the description above. ROI is the area defined at the simulation input, i.e., the astronomical
scene, beyond which the incoming light is considered a plane wave and is not diffracted by the
starshade.
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Fig. 2 The starshade we use in this paper, which is 13 m in radius and has 16 petals and designed
for the Starshade Rendezvous Mission.8

Hu et al.: Exoplanet detection in starshade images

J. Astron. Telesc. Instrum. Syst. 021214-3 Apr–Jun 2021 • Vol. 7(2)



Planets are extremely faint, so their signals can be weak compared to the readout noise. To
tackle this problem, the Roman Telescope uses an electron-multiplication charge-coupled device
(EMCCD),17 which amplifies the signal in an electron-multiplication register. This process
reduces the effective readout noise to less than one electron.18 EMCCDs introduce an additional
noise source: the multiplicative noise associated with the amplification process, which can be
eliminated using the detector in photon counting (PC) mode. PC mode applies a chosen thresh-
old to the number of electrons generated in each pixel and yields a value of one if the number of
electrons is larger than the threshold, zero otherwise. It is a binary process that does not measure
the exact number of photons but rather the presence of photons. As PC mode cannot distinguish
the event of one photon from the event of more than one photon, the exposure time is short
enough so that the expected number of photons in any pixel of the detector is <1. In this way,
photons are not wasted. In this work, we choose the integration time for each PC image to be 1 s
so that the maximum photon rate on the detector (looking at an Earth-like planet from 10 pc) is
around 0.1 photon per second per pixel.

Typically, the “binary” PC images are not used directly but rather are added together to create
a final image, which we will call a co-added image. In this way, the co-added images have a large
enough dynamic range so the different intensities of the sources can be well-reflected. Most of
the images shown in this paper are co-added final images, unless otherwise stated. The number
of PC images to combine into one co-added image is denoted by Nim. In this work, we use
Nim ¼ 2000, if not specified, otherwise; guidance on how to choose Nim is provided in Sec. 3.6.
The imaging field-of-view diameter is 9 arc sec and each pixel is 0.021 arc sec × 0.021 arc sec.
To visualize the detector’s performance, we use Monte Carlo to calculate the probability density
functions (PDFs) of the photon counts for different ground-truth photon fluxes in a co-added
image from 2000 PC images, shown in Fig. 3(a). Four of the PDF’s are plotted in Fig. 3(b); the
parameters in the simulations are listed in Table 1. A photon rate of 0.1 photon∕s (our expected
maximum rate) is well within the linear response regime.

Figure 4 shows one wavelength slice of a Haystacks model, along with a few results from
different stages in our simulation. Figure 4(a) shows the input of our simulation, a discretized
astrophysical scene of our solar system as viewed from 10 pc. The pixel size is small enough to
make sure that the Haystacks models are high-fidelity spatially. The Haystacks scene includes
the star, planets, interplanetary dust, and astrophysical background sources. As described in
Fig. 1, the light sources, i.e., Fig. 4(a), are diffracted at the starshade plane and then propagated
to the telescope’s pupil plane. A simple (aberration-free) telescope model propagates the pupil
plane to the detector plane, the result of which is shown in Fig. 4(b). Then Fig. 4(b) is processed

Fig. 3 PDFs of the photon counts for different ground-truth photon fluxes. (a). Each row is the PDF
of photon counts observed in one pixel in a co-added image from 2000 PC images corresponding
to the photon flux in that pixel. (b) Example PDF’s of the photon counts for four different ground-
truth photon fluxes, which correspond to the ones in (a). The PDF of photon counts observed
in one pixel in a co-added image from 2000 PC images corresponding to the photon flux 0.01,
0.1, 1, and 5 count∕s in the pixel.
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with the detector model to generate one single PC image, which is shown in Fig. 4(c). By comb-
ing 2000 PC images, we get the co-added image [Fig. 4(d)]. The dark region in the center is the
starlight suppression effect of the starshade. The brighter ring is the exozodiacal dust outside the
starshade’s IWA. Mars is too dim to be seen and Earth is of similar brightness as the exozodiacal
dust. Venus is bright enough to be seen. In the following sections, we propose a detection and
characterization method of planetary signals for co-added images at λ ¼ 0.55 μm and with a
bandwidth of λ ¼ 0.12 μm.

3 Generalized Likelihood Ratio Test

This section presents the GLRT as an automatic detection method for starshade missions. Our
work is motivated by the lack of any previous investigation into signal detection in starshade
images. We begin the section by reviewing past work on signal detection for direct imaging, most
of which are specialized to coronagraphic images.

The biggest challenge for coronagraphic images is the noise floor set by quasi-static speckles.
Different observing techniques and post-processing methods have been developed to try to
attenuate the speckles before attempting detection. They are all based on differential imaging,
which consists of estimating the star-only coronagraphic image and subtracting it from the

Table 1 Parameters for simulation of solar system as viewed from 10 pc.

Parameter Value Unit

Sun flux 45.66 Jy

Venus flux 2.99 × 10−8 Jy

Earth flux 4.85 × 10−9 Jy

Venus angular separation 70 mas

Earth angular separation 96 mas

Radius of the ROI 100 mas

Wavelength 0.55 μm

Bandwidth 0.12 μm

Radius of the starshade 13 m

Separation between starshade and telescope 3.72 × 107 m

Telescope diameter 2.4 m

Detector’s pixel size 0.021 arc sec

Quantum efficiency 1 ph∕e−

Integration time 1 s

Clock-induced charge 0.01 e−∕pixel∕frame

Dark current 2 × 10−4 e−∕pixel∕s

Electron-multiplying gain 2500 —

PC bias 200 e−∕pixel∕frame

Standard deviation of readout noise 100 e−∕pixel∕frame

Threshold parameter 5.5 —

Number of PC image for one co-added image 2000 —
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science images (also called speckle subtraction technique). Differential imaging relies on spe-
cific observation strategies such as angular diversity (ADI),19 spectral diversity,20 or multiple
reference star images21 to generate the differential signal. The various speckle subtraction meth-
ods developed for coronagraphic images may serve to improve detection in starshade images, but
it is beyond the scope of this work to include them. We focus on planet detection in images that
have not been post-processed and leave that work to be done in the future.

In our work, we do not post-process the images (as in speckle subtraction), so we now move
to detection methods. Braems and Kasdin22,23 used hypothesis testing for the detection. The
unknown parameters such as the planets’ positions and intensities can be removed by margin-
alizing the probability22 or using worst-case values.23 However, the choice of priors or using the
worst-case values is an open question. Kasdin and Braems23 assumed a known constant back-
ground; in our method, we will estimate the background with a maximum likelihood. Mawet
et al.24 (SNRt map) essentially tested if the intensity of a single test resolution is different from
the other resolution elements in a 1λ∕D-wide annulus at the same radius. They used small sample
statistics to address the problem of the statistical significance of detection when few realizations
of spatial speckles versus azimuth are present. Cantalloube et al.25 (ANDROMEDA) made a
signal template considering over/self subtraction caused by ADI rather than directly using a
theoretical PSF template when calculating maximum likelihood estimation (MLE). Ruffio
et al.26 (FMMF) also used Signal-to-noise ratio (SNR)-based methods. They include Karhunen-
Lòeve Image Projection (KLIP)-induced distortion in the match-filter template to estimate the
signal intensity. The standard deviation is calculated at each pixel while masking a disk with a
5-pixel radius centered on that pixel from the annulus to prevent a planet biasing its own SNR.
Flasseur et al.27 (PACO) used GLRTand used the full-covariance rather than assume independent
and identically distributed in the time dimension for the different frames. However, they assumed
that the covariance is the same under H0, H1 and thus calculate only one covariance. Moreover,
this covariance is not derived from the Gaussian equation together with the signal intensity, and
thus the result is not guaranteed to be MLE. Pairet et al.28 (STIM map) proposed STIM map,
which used a modified Rician distribution, which is a heavy tail distribution compared to
Gaussian, to model the speckles. Dahlqvist et al.29 (RSM map) used a Markov process to model
the same pixel throughout the different images. They claimed the residual quasi-static speckles
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Fig. 4 The solar system as viewed from 10 pc—and its results from different stages in our sim-
ulation. They are zoomed-in views of the images. (a) The original astronomical scene from
Haystacks project15 at λ ¼ 0.55 μm in log10 scale flux (the central star is made 1010 times dimmer
to reveal fainter features). (b) A simulated result before including the detector noise, with a perfect
starshade at λ ¼ 0.55 μm and with a bandwidth of λ ¼ 0.12 μm. (c) One PC image. (d) the co-
added image from 2000 PC images.
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after ADI can be characterized by their mean and variance. Recent studies also took the detection
problem as a binary classification problem, using random-forest classifiers (SODIRF) and deep
neural networks (SODINN).30 However, these machine learning methods need very large train-
ing sets, which are difficult to generate for unknown planet signals, and require a heuristic tuning
of hyper-parameters.

In this study, we also take the detection problem as a “hypothesis testing” problem and use a
GLRT. The null hypothesis (H0) is that there is no planet; the alternative hypothesis (H1) is that
there is a planet. We compare the posterior probabilities under the two hypotheses to decide
whether to reject the null. Instead of marginalization, we use MLE to first estimate the unknown
parameters (intensity, position, and standard deviation of the noise) and then use them to cal-
culate the likelihood ratio. Using this ratio, even when the maximum likelihood under the alter-
native hypothesis is low, we may still have a strong detection as long as the ratio is high (i.e., the
pattern is much less likely from pure noise). We first introduced the GLRT model and its pre-
liminary results in Ref. 13. In this section, we briefly describe the method, show recent improve-
ments, and present results.

3.1 GLRT Model for the Whole Image

The model for an image containing multiple planet signals, background, and noise and is
given by

EQ-TARGET;temp:intralink-;e001;116;495I ¼
XNx

i¼1

XNy

j¼1

½αi;jPi;j� þ bþ ω; (1)

where I is the matrix for an image; αi;j is the intensity of signals at pixel ði; jÞ in unit of Jy (the
value is zero if there is no signal at ði; jÞ); Pi;j is the matrix denoting the values of a normalized
PSF centered at ði; jÞ; b is the matrix for background, which contains star residual light and bias
from the detector; ω is the matrix for noise; and Nx; Ny are the number of pixels in x and y axes.

We assume that the noise in different pixels is an independent and identically distributed
Gaussian random variable with mean zero and unknown constant variance. As each final image
is the combination of many PC images, a Gaussian distribution should be a good approximation
for the noise due to the central limit theorem. As a Gaussian distribution is used as an approxi-
mation for the true underlying distribution, the estimation is called Gaussian quasi-maximum
likelihood estimation (QMLE). As long as the quasi-likelihood function is not oversimplified,
the QMLE is consistent and asymptotically normal. It is less efficient than the MLE, but may
only be slightly less efficient if the quasi-likelihood is constructed so as to minimize the loss
of information relative to the actual likelihood.31 We can then calculate the QMLE of αi;j and b,
which is equivalent to solving the optimization problem:

EQ-TARGET;temp:intralink-;e002;116;272min
αi;j;b

����I −XNx

i¼1

XNy

j¼1

½αi;jPi;j� − b

����
2

: (2)

This is an under-determined problem as we have 2NxNy unknown parameters, i.e., αi;j; b and
onlyNxNy data points, i.e., all the pixel values. Even assuming that we have a constant background
in the whole image, we still have NxNy þ 1 unknown parameters. Moreover, the assumption of
constant background is not ideal as the background may have local features. To approach the
problem, we use the idea of divide-and-conquer. If we assume no overlapping signals in the image,
we are able to individually analyze smaller search areas that are the size of the PSF core.

3.2 GLRT Model for a Search Area

In a small search area with the size of the PSF core, we can assume that there is only one planet
signal. We also assume the background is constant, which should be a reasonable assumption
over a small area. Moreover, noises are independent and identically distributed Gaussian random
variables. Thus the model for a search area is
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EQ-TARGET;temp:intralink-;e003;116;735xi;j ¼ αi;jPi;j þ bi;j1þ ωi;j; (3)

where xi;j denotes the search area centered on the global pixel (i; j); bi;j is the background inten-
sity; and ωi;j denotes the Gaussian noise in this area. We only use the central core of the PSF for
Pi;j centered at (i; j). The model states that the area we are observing xi;j contains a signal cen-
tered at the center of this area along with constant background light and Gaussian noise. If there
is no planet signal, αi;j should be zero. We stack pixel values in this target area into a column
vector for easier mathematical manipulation. We do the same to the reference PSF and the noise
matrix. The local model can be reformulated as a classical linear model:

EQ-TARGET;temp:intralink-;e004;116;625Gi;j ¼

2
666664

Pi;jð1Þ 1

Pi;jð2Þ 1

..

. ..
.

Pi;jðNÞ 1

3
777775; θi;j ¼

�
αi;j
bi;j

�
; (4)

EQ-TARGET;temp:intralink-;e005;116;527xi;j ¼ Gi;jθi;j þ ωi;j; (5)

where xi;j is the vectorized target area centered at ði; jÞ; N is the number of pixels in the area;
bi;j is the constant background; Pi;jðmÞ is the value at the m’th pixel in the known vectorized
template PSF centered at ði; jÞ for a point source signal of normalized intensity; αi;j is the plan-
et’s intensity; and ωi;j is an N × 1 noise vector. θi;j is unknown.

The conditional probability of this search area can be written as
EQ-TARGET;temp:intralink-;e006;116;453

Lðθi;j; σ2i;jÞ ¼ pðxi;jjθi;j; σ2i;jÞ

¼ 1

ð2πσ2i;jÞN∕2 exp

�
−

1

2σ2i;j
kxi;j − Gθi;jk2

�
: (6)

As the data xi;j are known and the parameters θi;j; σ2i;j are unknown, this probability function is

a likelihood function for the unknown parameters [so it is also denoted as Lðθi;j; σ2i;jÞ above].
Taking the natural logarithm of both sides of Eq. (6), the log-likelihood of the search area in the
co-added image is

EQ-TARGET;temp:intralink-;e007;116;336

lðθi;j; σ2i;jÞ ¼ lnðLðθi;j; σ2i;jÞÞ

¼ −
N
2

lnð2πÞ − N
2

lnðσ2i;jÞ −
1

2σ2i;j
kxi;j − Gθi;jk2: (7)

We maximize the log-likelihood function (equivalently maximizing the likelihood) to find the
maximum likelihood estimator (the subscripts i; j for the estimated parameters are left out for
simplicity):

EQ-TARGET;temp:intralink-;e008;116;237ðθ̂1; σ̂21Þ ¼ argmax
θi;j;σ2i;j

lðθi;j; σ2i;jÞ: (8)

As mentioned previously, a Gaussian distribution is used as an approximation for the true under-
lying distribution; the estimation is also QMLE. The resulting estimation under H1 is

EQ-TARGET;temp:intralink-;e009;116;168θ̂1 ¼ ðGT
i;jGi;jÞ−1GT

i;jxi;j: (9)

And the estimated variance under H1 is

EQ-TARGET;temp:intralink-;e010;116;121σ̂21 ¼
1

N
ðxi;j − Gi;jθ̂1ÞTðxi;j − Gi;jθ̂1Þ: (10)

Meanwhile, the QMLE under H0 is
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EQ-TARGET;temp:intralink-;e011;116;735θ̂0 ¼ θ̂1 − ðGT
i;jGi;jÞ−1AT½AðGT

i;jGi;jÞ−1AT�−1ðAθ̂1Þ; (11)

which is obtained from solving the constrained optimization problem:

EQ-TARGET;temp:intralink-;e012;116;698min
θ
kxi;j − Gi;jθk2; s:t: Aθ ¼ 0; (12)

where A ¼ ½1; 0�. And the estimated variance under H0 is

EQ-TARGET;temp:intralink-;e013;116;649σ̂20 ¼
1

N
ðxi;j − Gi;jθ̂0ÞTðxi;j − Gθ̂0Þ: (13)

In the problem of parameter estimation, we obtain information about the unknown param-
eters from the observed data of the random variables from the probability distribution governed
by the parameters. The Fisher information matrix is a way to quantify the amount of information
that the observable random variables carry about the unknown parameters. The definition of the
Fisher information matrix is

EQ-TARGET;temp:intralink-;e014;116;547IðϕÞ ¼ varϕf∇lðϕÞg ¼ −Eϕf∇2lðϕÞg; (14)

where the notation “var” means the variance; “E” means expectation; and ϕ is the vector of
unknown parameters and ϕ ¼ ðαi;j; bi;j; σ21ÞT for the alternative hypothesis H1. In our case
(a linear model), the Fisher information matrix reduces to32

EQ-TARGET;temp:intralink-;e015;116;477IðϕÞ ¼
�−Eð ∂2l

∂θ1∂θT1
Þ 0

0 −Eð ∂2l
∂ðσ2

1
Þ2Þ

�
: (15)

Due to the block structure of IðϕÞ, the variance–covariance of θ̂G;1 can be estimated by I−1θG;1,
32

where

EQ-TARGET;temp:intralink-;e0016;116;394Iθ̂1 ¼ −
∂2lðθ̂1; σ̂21Þ
∂θ1∂θT1

¼ GT
i;jGi;j

σ̂21
; (16)

and we can also derive the confidence intervals (CIs) for the QMLE:33

EQ-TARGET;temp:intralink-;e017;116;335α̂i;j � z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI−1

θ̂1
Þ
11

q
; (17)

and

EQ-TARGET;temp:intralink-;e018;116;284b̂i;j � z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI−1

θ̂1
Þ
22

q
; (18)

where z is the appropriate critical value (for example, 1.96 for 95% confidence), and the notation
ðI−1

θ̂1
Þ
ii
means that we invert the matrix Iθ̂1 first, and then take the ii component of the inverted

matrix. The variance of σ̂21 is estimated by I−1ðσ̂21Þ,32 where

EQ-TARGET;temp:intralink-;e0019;116;203Iðσ̂21Þ ¼ −
∂2lðθ̂1; σ̂21Þ
∂ðσ21Þ2

¼ N
2σ̂41

: (19)

3.3 Detection in a Search Area

The detection problem becomes a hypothesis testing problem:

EQ-TARGET;temp:intralink-;e020;116;114H0∶Aθi;j ¼ αi;j ¼ 0 versus H1∶Aθi;j ¼ αi;j ≠ 0; (20)

where A ¼ ½1; 0�.
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To decide which hypothesis is true, it is intuitive to compare the posterior probability of H1

and H0 when xi;j occurs. We use Bayes’ rule and define the odds ratio:

EQ-TARGET;temp:intralink-;e021;116;711Oðxi;jÞ ¼
PðH1jxi;jÞ
PðH0jxi;jÞ

¼
R
fðzÞPðxi;jjαi;j ¼ z; bi;j; σi;jÞdz

Pðαi;j ¼ 0ÞPðxi;jjαi;j ¼ 0; bi;j; σi;jÞ
; (21)

where fðzÞ is the PDF of the planet intensity and σi;j is the standard deviation of the noise. We
should decideH1 is true if the odds ratio is larger than one.

22 However, we do not know fðzÞ, bi;j,
or σi;j. It is reasonable to compare

EQ-TARGET;temp:intralink-;e022;116;627Rðxi;jÞ ¼
maxαi;j;bi;j;σi;j Pðxi;jjαi;j; bi;j; σi;jÞ
max
bi;j;σi;j

Pðxi;jjαi;j ¼ 0; bi;j; σi;jÞ
(22)

to a threshold. This test is called the GLRT. Moreover, not only is the planet intensity αi;j
unknown, so are the background intensity and noise statistics. We use the QMLE mentioned
above. Then the ratio becomes

EQ-TARGET;temp:intralink-;e023;116;539Rðxi;jÞ ¼
Pðxi;jjθ̂i;j;1; σ̂i;j;1;H1Þ
Pðxi;jjθ̂i;j;0; σ̂i;j;0;H0Þ

; (23)

where θ̂i;j;k; σ̂i;j;k are the estimated values under hypothesis Hk, fk ¼ 0; 1g.
To simplify further, H1 is favored, i.e., a planet is more likely to exist at the test location, if

EQ-TARGET;temp:intralink-;e024;116;461

Tðxi;jÞ ¼ ðN − 2ÞðRðxi;jÞ 2
N − 1Þ

¼ ðN − 2Þ σ̂
2
i;j;0 − σ̂2i;j;1
σ̂2i;j;1

¼ ðN − 2Þ θ̂
T
i;j;1AT½AðGT

i;jGi;jÞ−1AT�−1Aθ̂i;j;1
xTi;jð1N − Gi;jðGT

i;jGi;jÞ−1GT
i;jÞxi;j

> γ; (24)

where the threshold γ is based on the detection performance.34 The probability of false alarms
(FAs), also called false alarm rate and false positive rate, PFA and the probability of detection,
also called true positive rate, PD are given by

EQ-TARGET;temp:intralink-;e025;116;325PFAi;j ¼
Z
Tðxi;jÞ>γ

pðxi;jjH0Þdxi;j ¼ QF1;N−2
ðγÞ; (25)

EQ-TARGET;temp:intralink-;e026;116;269PDi;j ¼
Z
Tðxi;jÞ>γ

pðxi;jjH1Þdxi;j ¼ QF 0
1;N−2ðλi;jÞðγÞ; (26)

where Q is the probability of exceeding a given value; F1;N−2 is an F distribution with one
numerator degree of freedom and N − 2 denominator degrees of freedom; and F 0

1;N−2ðλi;jÞ is
a noncentral F distribution with one numerator degree of freedom and N − 2 denominator
degrees of freedom and noncentrality parameter λi;j.

34 λi;j is given by

EQ-TARGET;temp:intralink-;e027;116;194 λi;j ¼ θTi;j;1A
T½AðGT

i;jGi;jÞ−1AT�−1Aθi;j;1
σ2

; (27)

where θi;j;1 is the true value underH1 and σ2 is the true variance of the noise. This tells us that the
probability of a FA only depends on the threshold, but the probability of detection depends on the
planet intensity. The brighter the planet is, the higher the detection probability is.

3.4 Detection in the Whole Image

We have built a model and corresponding detection and estimation method for a search area that
is the size of the PSF core. However, the potential planets’ locations are unknown, so to perform
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detection in the whole image, we will traverse the whole image using the method outlined in
Sec. 3.3. For each pixel, we use the detection area centered at this pixel, that is to say, we testH1:
there is a planet centered at this pixel, against H0: there is only constant background there. After
calculating for all the pixels in the image, we choose an FA rate and apply its corresponding
threshold. Examples are illustrated in Fig. 5. As the PSF changes with the distance from the
starshade, our detection algorithm uses a library of reference PSFs.

When the pixel is at the boundary of the PSF in the image, [one example is shown as a
magenta asterisk in Fig. 5(b)], the detection area only contains part of the planet which is not
centered at the pixel, so neither H1 nor H0 is true and the MLE of planet intensity can be neg-
ative. Thus we set those negative estimates as zero and thus Tðxi;jÞ ¼ 0.

After thresholding, we get a binary image. Generally speaking, some pixels next to the signal
center will also be detected. Thus to estimate the position of the planet, we first find the convex
hulls in the thresholded image and find the minimal circle bounding each convex hull. The center
of the circles will be the estimates for the planets’ positions. One example is shown in Fig. 5(e).
The estimated planet intensity is the MLE of I at the estimated planet position. As we have
shown in our previous work,14 the PSF changes with the distance away from the starshade center.
If we use only one PSF template in GLRT, normally the one without a starshade, we can have a
higher FA rate, worse position estimation, and worse intensity estimation. Thus we need to have
a library of PSFs at difference distances from the starshade center for the GLRT model. In this
paper, we define intensity error ¼ ðestimated intensity−real intensityÞ

real intensity
and report its value for all cases.

3.5 Results

Two detection and estimation examples are presented in Figs. 5 and 6. In Fig. 5, the detection
process is demonstrated step by step with an image with perfect starshade. In Fig. 6, we dem-
onstrate the GLRT’s ability to distinguish real signals from fake ones by providing the detection
result for an image with a starshade with truncated tips. Compared to the perfect starshade, the
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Fig. 5 Example of the GLRT detection on an image with perfect starshade and without exo-
zodiacal dust. (a) Noiseless image: it should be taken as ground truth for image processing.
(b) Image with detector noise: examples of search areas are also shown. The white box is cen-
tered on pixel (7,12), which is marked by the white asterisk. The pixel values in the white box form
data x7;12 in Eq. (3). The magenta box forms data x8;14 and is the case where the search area is at
the edge of the PSF. (c) The T values from Eq. (24) in each pixel. (d) FA rate map. (e) binary
detection image after thresholding. We apply a threshold of 0.7354 to the T map, which results
in 0.4 FA rate. The white circles are the minimal bounding circles used to estimate the planet
position. (f) The relationship between threshold and FA rate from Eq. (25).
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tip of one of this starshade’s petals is truncated by 6.5 mm and resulting in a tip width of
48.3035 mm (the radius of the designed starshade is 13 m and the petal tip width is
48.3216 mm). We refer to this starshade as the clipped starshade. This defect causes a bright
spot in the image, which could be mistaken for a planet. We still use the PSF templates of the
perfect starshade for this clipped starshade case. GLRT successfully detects Venus and Earth
from the fake signal. The errors of intensity and position estimation for these two examples
are presented in Table. 2. The fake signal is close to Venus, so the intensity estimation of
Venus is degraded for the clipped starshade case. The pixel size of the images is 0.021 arc sec,
so the position estimation is accurate to the pixel level.

We also calculate the receiver operating characteristic (ROC) curves for Venus and Earth
shown in Fig. 7, where we compare the performance of GLRT for co-added images with different
numbers of total images, which is denoted as Nim. Equations (25) and (26) give the theoretical
FA rate and true positive (TP) rate under a Gaussian assumption and are therefore only an
approximation. Moreover, as shown in Eq. (27), the calculation of the TP rate needs the value
of the true variance, which we need to estimate. Thus to more accurately demonstrate the detec-
tion’s performance, we use a Monte Carlo simulation. To calculate the ROC curves, we apply
GLRT to get the FA rate map for a set of different thresholds and record if it results in a detection
or missed detection of Earth, Venus, and a background pixel. We run a large number of trials,
which is denoted as ntrials and record the ratio of detection of Earth and Venus as the TP rate for
Earth and Venus and record the ratio of detection of the background pixel as the false positive
rate. The CI of a proportion p̂ is35
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Fig. 6 Example of the GLRT detection on an image with clipped starshade. (a) Noiseless image:
the defect on the starshade causes a bright spot that resembles a planet; (b) image with detector
noise applied; (c) the T values from Eq. (24) in each pixel; (d) FA rate map; and (e) binary detection
image after thresholding. We apply a threshold of 0.7354 to the T map, which results in 0.4 FA
rate. GLRT successfully detects Venus and Earth and ignores the fake signal in the image.

Table 2 Intensity estimation error and position estimation error comparison between results in
images using different starshades.

Starshade
Intensity error
for Venus (%)

Intensity error
for Earth (%)

Position error
for Venus (arc sec)

Position error
for Earth (arc sec)

Perfect starshade 1.5 1.2 3 × 10−3 9.5 × 10−3

Clipped starshade 20.5 4.1 3 × 10−3 9.5 × 10−3
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EQ-TARGET;temp:intralink-;e028;116;552

�
p̂ − z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 − p̂Þ
ntrials

s
; p̂þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1 − p̂Þ
ntrials

s �
: (28)

Thus for a point ðp̂false; p̂positiveÞ on a ROC curve, we take the CI using the two points:

EQ-TARGET;temp:intralink-;e029;116;496

�
p̂false − z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂falseð1 − p̂falseÞ

ntrials

s
; p̂positive þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂positiveð1 − p̂positiveÞ

ntrials

s �
; (29)

and

EQ-TARGET;temp:intralink-;e030;116;433

�
p̂false þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂falseð1 − p̂falseÞ

ntrials

s
; p̂positive − z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂positiveð1 − p̂positiveÞ

ntrials

s �
: (30)

For each ROC curve, we apply these two boundaries to calculate the shaded area as CI. ROC
curves for Venus and Earth with different numbers of PC images to combine into one co-added
image Nim (with different integration times) are shown in Fig. 7. As Venus is brighter than Earth,
the performance for Venus is better than that for Earth. Increasing the integration time has the
similar effect as increasing the planet intensity because both increase the expected number of
photons arriving on the pixel. Moreover, the performance for both Venus and Earth is better with
the higher number of PC images in the co-added image.

3.6 Optimal Number of PC Images for One Co-Added Image

As we mentioned before, the number of PC images to combine into one co-added image Nim is
an important hyperparameter to be chosen before doing detection via most of the methods. For
example, GLRT’s performances vary with the number of PC image for one co-added image, as
shown in Fig. 7. With too small Nim, the TP rate and FA rate for the detection may not be
desirable. With too big Nim, precious observation time would be wasted. To choose the best
Nim, we can utilize the ROC curves.

First, given integration time, three parameters need to be specified: the minimum planet
intensity to be detected, the maximum FA rate that can be accepted, and the minimum TP rate
that is acceptable. Then for a different Nim, the ROC is calculated via Monte Carlo simulation.
Finally, the minimum Nim that can reach the requirements are chosen. For example, if we assume
that the dimmest planet has the same intensity as Earth, the maximum acceptable FA rate is 0.16
and the minimum acceptable TP rate is 0.85. The acceptable FA rate and TP rate pairs are in the
shaded green region in Fig. 8. We calculate the ROCs with different Nim for integration time 1 s
and find that the ROC of Nim ¼ 700 is the first one to reach the green region in Fig. 8. Thus we
choose Nim ¼ 700 as the optimal number of PC images to be co-added into the final image.

Fig. 7 ROC with CI for Venus and Earth using GLRT with different integration times. (a) ROC for
co-added images each from N im ¼ 200 PC images. The curves for an integration time of 10 s
overlaps with the plot’s boundary, which indicates perfect detection performance. ROC for co-
added images each from (b) N im ¼ 700 PC images and (c) N im ¼ 2000 PC images. The shaded
region behind each ROC curve is its 95% CI.
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3.7 Comparison with Other Methods

We also compared GLRT with the performance of the detection method based on SNR map
implemented in pyKLIP.36 The algorithm computes the standard deviation in concentric annuli
after masking the signal area in question as the level of noise in SNR. The width of the annuli used
is the diameter of the PSF core in this paper. The SNR maps for the three example co-added
images in Figs. 5(b) and 6(b) are shown in Fig. 9 to help visually compare the performance with
the GLRT method. ROC curves are also calculated, shown in Fig. 10. The calculation uses the
same set of images as the ones used for Fig. 7. As it is hard to visually compare the curves, we list
the area under the ROC curve (AUC) for all the curves in Table. 3. AUC is an aggregate measure
of performance across all possible thresholds. It can be interpreted as the probability that the
model ranks a random positive example higher than a random negative example. AUC is 1 if
the model’s decisions are all correct and 0 if all wrong. The disadvantage of this SNR definition
is that the standard deviation calculation will be biased by the presence of point sources in annuli.
In our case, the radius of Venus and Earth from the image center is close, so the signals are
partially in each other’s annuli for the calculation of the noise standard deviation. Thus the SNR
is biased, which is validated by the deteriorating performance for Earth when signals become
stronger due to increased integration time or Nim, shown in Figs. 10(b) and 10(c). Overall,
GLRT outperforms SNR method on images that have not been post-processed; it is beyond the
scope of this work to examine the effects of post-processing on each detection method.

4 Iterative GLRT for Exozodiacal Dust

Exozodiacal dust is debris in the habitable zones of stars believed to come from extrasolar aste-
roids and comets.12 Though the true structure of exozodiacal dust is unknown, as a first attempt,

Fig. 8 ROC with CI for Earth using GLRT with different N im. The horizontal green dotted line is the
acceptable TP rate and the vertical one is the acceptable FA rate region. Thus the acceptable true
TP and acceptable FA region is the shaded green area. The ROC with N im ¼ 700 is the first ROC
reaching the acceptable region.

Pixel index

(a)

5

10

15

P
ix

el
 in

de
x

0

1

2

3

4

5

6

5 10 15 5 10 15
Pixel index

(b)

0

2

4

6

8

S
N

R

Fig. 9 The SNR map calculated with the pyKLIP package:37 result for the image in (a) Fig. 5(b)
and (b) Fig. 6(b).
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we simply assume it is axisymmetric, which is believed to be a reasonable approximation for
small dust grains.38 When the intensity of exozodiacal dust is similar to that of a target planet, the
methods mentioned above have difficulty detecting the planet’s signal. We develop here an iter-
ative GLRT to tackle this problem. It is essentially an expectation–maximization algorithm.39

The planets’ signals and the exozodiacal dust are both unknown and need to be estimated.
However, it is hard to estimate them accurately at the same time, and their estimation can in-
fluence each other. The solution is to iteratively estimate either the planets’ signal or the exo-
zodiacal dust first and then use the estimation as a known factor to estimate the other until both
estimates converge.

Fig. 10 ROC with CI for Venus and Earth using pyKLIP with different integration times. (a)–(c) The
result where Earth and Venus are at the real locations as shown in Fig. 5(a). (d)–(f) The result
where we eliminate the impact of planets for each other: when calculating the ROCs for Earth,
we did not include Venus in the images; when calculating the ROCs for Venus, we did not include
Earth in the images. (a), (d) ROC for co-added images each from N im ¼ 200 PC images; (b),
(e) ROC from N im ¼ 700 PC images; and (c), (f) ROC from N im ¼ 2000 PC images.

Table 3 Comparison of AUC for GLRT and SNR method from pyKLIP.36 Unimpacted means only
one planet is included in the image simulation.

Venus
10 s

Earth
10 s

Venus
1 s

Earth
1 s

Venus
0.5 s

Earth
0.5 s

GLRT, 200 PC 1 1 0.9883 0.7374 0.8880 0.5797

GLRT, 700 PC 1 1 1 0.9503 0.9963 0.7490

GLRT, 2000 PC 1 1 1 0.9987 1 0.9275

SNR, 200 PC 1 0.8299 0.9714 0.6953 0.8804 0.6219

SNR, 700 PC 1 0.5059 0.9993 0.7159 0.9799 0.6863

SNR, 2000 PC 1 0.0325 1 0.4554 0.9985 0.6112

Unimpacted SNR, 200 PC 1 0.9999 0.9768 0.7595 0.8870 0.6529

Unimpacted SNR, 700 PC 1 1 0.9997 0.9069 0.9848 0.7711

Unimpacted SNR, 2000
PC

1 1 1 0.9806 0.9995 0.8753
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When there is exozodiacal dust, the model in Eq. (1), specified at pixel ðx; yÞ, becomes

EQ-TARGET;temp:intralink-;e031;116;723Iðx; yÞ ¼
XNx

i¼1

XNy

j¼1

½αi;jPi;jðx; yÞ� þ bðx; yÞ þ dðx; yÞ þ ωðx; yÞ; (31)

where dðx; yÞ is the exozodiacal dust at pixel ðx; yÞ, which is also unknown. We now have
3NxNy unknown parameters.

The exozodiacal dust degrades the detection and estimation. For example, if we directly
apply the GLRT method introduced in the previous section for Fig. 4(d), we get a confusing
FA rate map in Fig. 11(a); it is hard to distinguish Earth from the exozodiacal dust.

To reduce the number of unknowns, we assume that the dust is nearly axisymmetric, which
may be a reasonable approximation for small dust grains.38 Thus

EQ-TARGET;temp:intralink-;e032;116;592Iðx; yÞ ¼
XNx

i¼1

XNy

j¼1

½αi;jPi;jðx; yÞ� þ bðx; yÞ þ dðrÞ þ ωðx; yÞ; (32)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Then Eq. (2) becomes

EQ-TARGET;temp:intralink-;e033;116;531min
α;b;d

����I −XNx

i¼1

XNy

j¼1

½αi;jPi;j� − b − d

����
2

: (33)
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Fig. 11 Example of iterative GLRT applied to Fig. 4(d): (a) T value map for Fig. 4(d). (b) The
median value for each radius of Fig. 4(d), i.e., the exozodiacal dust estimation d� at initial step.
(c) The residual Ib after subtracting d� from I , i.e., the residual after subtracting (b) from Fig. 4(d). It
is the initial estimation for the underlying image with only planets. (d) T map for (c). (e) The new
estimate of planets

PNx
i¼1

PNy

j¼1½αi ;jP i ;j ðx; yÞ�. After applying GLRT on (c) and get detection, we also
obtained the intensity and position estimation of the planets. (f) Exozodiacal dust Ip after sub-
tracting estimated planet signals (e) and estimated local background from the original image
Fig. 4(d). (g) The dust estimation at the final step. (h) The final residual I b , i.e., the residual after
subtracting (g) from Fig. 4(d). It is the final estimation for the underlying image with only planets
and estimated local background. (i) T value map for (h).
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We cannot directly split the whole image into smaller areas and do detection separately like
Eq. (9) as the estimation of dust in one area also depends on other areas at the same radii from
the center. To tackle this, we split the estimation of signals and exozodiacal dust into two steps.
First, we take the median of the values for each radius to estimate the background. We use the
median rather than mean to avoid the influence of the existence of planet signals at some radius
[an example is shown in Fig. 11(b)]. This is equivalent to solving for the optimization problem
for each r:

EQ-TARGET;temp:intralink-;e034;116;651d�ðrÞ ¼ argmin
dðrÞ

kIðrÞ − dðrÞk1: (34)

The � denotes the estimate of the corresponding parameter. Then we subtract the estimated back-
ground, which contains bright exozodiacal dust:

EQ-TARGET;temp:intralink-;e035;116;587Ib ¼ I − d�ðrÞ: (35)

An example is shown in Fig. 11(c). Then applying GLRT on this image Ib produces the T value
map in Fig. 11(d) and provides an estimation of the planets’ positions and intensities, as shown in
Fig. 11(e). The estimated planets are subtracted to get a better estimation of the background, as
shown in Fig. 11(f) and the process is repeated iteratively. The procedure is summarized in
Fig. 12 and the complete example is shown in Fig. 11. In Table 4, we summarize the intensity
and position estimation error for the example. The ROC curves are shown in Fig. 13. The per-
formance is undermined a little by the dust, compared to that without dust.

5 Conclusion

A starshade is a promising instrument for the direct imaging of Earth-like planets. In this paper,
we briefly describe our process for simulating realistic starshade images and preliminary study of
signal detection in starshade images, which no previous work has looked into. The core detection
and estimation part are done by GLRT. We first obtain intensity estimates by QMLE. Then the
likelihood ratio with respect to estimated parameters is calculated. After choosing an FA rate, we
can threshold the image and detect the planets. For cases with exozodiacal dust, we split the
process into two parts: dust estimation and signal estimation and use GLRT iteratively.
Examples using these methods are shown in Secs. 3 and 4. The GLRT method successfully

Fig. 12 The flowchart describes the process of iterative GLRT. The blue box is the initialization
step.

Table 4 Intensity and position estimation error for Fig. 4(f) via iterative
GLRT methods

Planet Intensity error (%) Position error (mas)

Venus −5.9 21

Earth −38.3 30
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and efficiently flags potential planets with a concrete FA rate. It can help distinguish planet signals
from artifacts caused by small starshade shape errors, such as a truncated petal tip. In addition,
we provide a guidance to choose the best number of PC images to combine into one co-added
image Nim, utilizing the ROC curves. This will help utilize the observation time efficiently.

Due to the limitation of Gaussian approximation for the noise distribution in the image,
Gaussian GLRT introduces detection performance improvement but not drastically, compared
to the SNR method commonly used in high-contrast imaging. We have worked on an improved
version of the GLRT method based on the accurate model for PC images rather than approxi-
mation and thus advances the detection performance;40 we present the most recent result on this
in Ref. 41. The performance can be further improved if we have prior knowledge about the
probability distribution of the planets’ intensity in Eq. (21), which may be available after future
exoplanet surveys. In this work, we present the iterative GLRT assuming face-on, uniform exo-
zodiacal dust, but the same concept can be applied to more detailed models of the dust structure.
In this work, spectral information is not discussed. However, the method introduced in this paper
can be applicable to different cases. If images at different wavelengths are taken, the product of
the likelihood at different wavelengths will be the final likelihood for these images. Then MLE
and GLRT can be calculated, and thus a detection decision can be made.
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